Precept 6: RNNs

Samyak Gupta
03/31/2023
Agenda

- Recurrent Neural Networks
- LSTMs and GRUs
Recap: Feed Forward Neural Networks (FFNs)

- The units are connected with no cycles
- The outputs from units in each layer are passed to units in the next higher layer
- No outputs are passed back to lower layers

But FFNs are limited!
- Fixed input lengths
- Number of parameters scales with context window size
- Assume simultaneous access to entire window
Recurrent Neural Networks (RNNs)

- A **recurrent** neural network is any network that contains a cycle within its network connections.

\[
\begin{align*}
 h_t &= g(Uh_{t-1} + Wx_t) \\
 y_t &= f(Vh_t)
\end{align*}
\]
“Unrolled” View of RNNs

Equivalent!
“Unrolled” View of RNNs

- Pick some starting state h_0
- Compute h_1 using h_0
- Compute the output y_1, using h_1 and some input x_1
- Compute h_2 using h_1
- ...
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”

Backpropagation “through time”: Backpropagating the loss through this unrolled representation
An Example: RNNs for Language Modelling

Predict the sentence “So long and thanks for all the fish”
Predict the sentence “So long and thanks for all the fish”
Tradeoffs of RNNs

- Can handle arbitrary length inputs
- Reuse weights to reduce total model parameters
- Suffers from vanishing/exploding gradients
- Doesn’t take full advantage of highly parallel hardware
An Aside: Some Intuitions on Gradient Issues

https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

- Choice of activation function matters

What if you had an unlucky initialization?
An Aside: Some Intuitions on Gradient Issues

https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

- Choice of activation function matters
- Weight initialization matters

Whether gradients vanish/explode depends on the eigenvalues of weight matrices
An Aside: Some Intuitions on Gradient Issues

https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

- Choice of activation function matters
- Weight initialization matters

Whether gradients vanish/explode depends on the eigenvalues of weight matrices

Example: Consider simple RNN, with $g = \text{ReLU}$. Suppose all dimensions are 1.

$$h_t = g(Uh_{t-1} + Wx_t)$$
$$y_t = f(Vh_t)$$
How to solve gradient issues?

Exploding Gradients

- “Clip” the gradients

What would the gradient \([2, 2]\) be clipped to if the max allowed norm is 2?

\([\sqrt{2}, \sqrt{2}]\)
How to solve gradient issues?

Exploding Gradients
- “Clip” the gradients

Vanishing Gradients
- Choose a different activation function
- Initialize weights properly
- Use a different architecture (e.g. LSTM)

What would the gradient [2, 2] be clipped to if the max allowed norm is 2?

[√2, √2]
LSTMs

Simple RNN

LSTM
LSTMs

Simple RNN

LSTM

Two recurrent values!
(hidden and cell states)
LSTMs

Simple RNN

LSTM

Two recurrent values!
(hidden and cell states)

“Gates”
LSTMs Broken Down

Gates (i.e. sigmoid followed by multiplication)

- Outputs value in range (0, 1)
- Intuitive meaning:
 - Close to 0 => “forget this value”
 - Close to 1 => “keep this value”

Example:

\[
\begin{align*}
[1, 2, 3, 4] & \rightarrow [-10, 0, 5, 10] \\
[0, 1, 3, 4] & \rightarrow [0, 1, 3, 4]
\end{align*}
\]
LSTM: Example scenario (Language Modelling)

Suppose we are predicting the sentence “Jon is a boy. Sally is a girl.”
LSTM: Step 1

Suppose we are predicting the sentence “Jon is a boy. Sally is a girl.”

Step 1 (Forget gate): Discard information.

“Given the current input and the previous hidden state, how much should I **discard from** the cell state?”

\[
f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)
\]

e.g. When I see the word “Sally”, I may want to discard existing information associated with the gender of the subject in the cell state (which may be carried over from the first half of the sentence)
LSTM: Step 2

Suppose we are predicting the sentence “Jon is a boy. Sally is a girl.”

Step 1 (Forget gate): Discard information.
“Given the current input and the previous hidden state, how much should I discard from the cell state?”

Step 2 (Input gate): Add new information.
“Given the current input and the previous hidden state, what should I add to the cell state?”

\[i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right) \]
\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

e.g. When I see the word “Sally”, I may want to add information to the cell state indicating that the subject is female.
LSTM: Step 3

Suppose we are predicting the sentence “Jon is a boy. Sally is a girl.”

Step 1 (Forget gate): Discard information.
“Given the current input and the previous hidden state, how much should I discard from the cell state?”

Step 2 (Input gate): Add new information.
“Given the current input and the previous hidden state, what should I add to the cell state?”

Step 3 (Output gate): Compute the output.
“Given the current input, previous hidden state, and updated cell state, what should I output?”

\[o_t = \sigma(W_o [h_{t-1}, x_t] + b_o) \]
\[h_t = o_t \cdot \tanh(C_t) \]

E.g. Predicting the word “girl” given that your cell state should contain gender information from when it saw Sally.
Gated Recurrent Units (GRUs)

LSTM

GRU

Only one recurrent state
Input and forget gates are combined!
Gated Recurrent Units (GRUs)

LSTM

GRU

Only **one** recurrent state
Input and forget gates are combined!

Fewer parameters than LSTMs (more performant), but less powerful
Bidirectional RNNs

When we have access to an entire sequence x_0, \ldots, x_n at once, we can improve performance using bidirectional RNNs.