Precept 2: Classification cos 484

Simon Park, Tyler Zhu (slides borrowed heavily from Austin Wang, COS 324) 2/7/2025

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{\sum_{v \in V} c(w_1, \dots, w_{n-1}, v)}.$ To prevent (possible) infinite perplexity on the test

corpus D_t , you apply Laplace smoothing. Let $P(D), P(D_t)$ be the unsmoothed probabilities and $P'(D), P'(D_t)$ be the smoothed probabilities.

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t ,

you apply Laplace smoothing. Let $ppl(D), ppl(D_t)$ be perplexities of the unsmoothed model and n, etc)?

1. $ppl'(D) \ge ppl(D)$

2. $ppl'(D_t) < ppl(D_t)$

3. $ppl(D) < ppl(D_t)$

 $ppl'(D), ppl'(D_t)$ of the smoothed model. Is the following T, F or undetermined (depends on model, data,

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t , you

of the smoothed model. Is the following T, F or undetermined (depends on model, data, n, etc)?

1. $ppl'(D) \ge ppl(D)$

that P(D) cannot increase under any other distribution for $P(w_n | w_1, \ldots, w_{n-1})$

2. $ppl'(D_t) < ppl(D_t)$

3. $ppl(D) < ppl(D_t)$

- apply Laplace smoothing. Let ppl(D), $ppl(D_t)$ be perplexities of the unsmoothed model and ppl'(D), $ppl'(D_t)$

This is true! Remember that setting the probability using counts (above) is the MLE estimate, which means

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t , you

apply Laplace smoothing. Let $ppl(D), ppl(D_t)$ be perplexities of the unsmoothed model and etc)?

1.
$$ppl'(D) \ge ppl(D)$$
 - T

2. $ppl'(D_t) < ppl(D_t)$

test corpus is very similar to the train corpus, and smoothing will cause its probability to drop.

3. $ppl(D) < ppl(D_t)$

- $ppl'(D), ppl'(D_t)$ of the smoothed model. Is the following T, F or undetermined (depends on model, data, n,

This is undetermined! It's not clear that the test corpus will have infinite perplexity. It is possible that the

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t ,

you apply Laplace smoothing. Let $ppl(D), ppl(D_t)$ be perplexities of the unsmoothed model and n, etc)?

- 1. $ppl'(D) \ge ppl(D) T$
- 2. $ppl'(D_t) < ppl(D_t) U$
- 3. $ppl(D) < ppl(D_{t})$

 $ppl'(D), ppl'(D_t)$ of the smoothed model. Is the following T, F or undetermined (depends on model, data,

Undetermined. A test corpus consisting solely of high-frequency n-grams might have a higher probability

Todays Topics

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$. Two ways to do this:

Naive Bayes < — Covered in lecture in great detail!

Logistic Regression

Todays Topics

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d). Two ways to do this:

Naive Bayes

Logistic Regression < – Focus for today's Precept

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of class that maximizes $P(c \mid d)$

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Logistic Regression: Features

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute $P(c \mid d)$ given a set of features constructed from the input document d.

Logistic Regression: Features

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Compared to NB, with LR we take a more direct approach: directly compute $P(c \mid d)$ given a set of features constructed from the input document d.

Value	
3	
2	The features to use is a design decision. A
1	natural default is to use a vector $x \in \mathbb{R}^{ V }$
3	where each dim is the counts of one word
0	in the vocabulary (BOW)
$\ln(64) = 4.15$	

Logistic Regression: LR Model

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Now given some feature vector *x* how do we turn this to a probability?

Logistic Regression: LR Model

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x how do we turn this to a probability?

belongs to a class. We call these numbers logits.

Convert the features to a number. The higher the number, the more confident we are that the document

Logistic Regression: LR Model

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x how do we turn this to a probability?

- belongs to a class. We call these numbers **logits**.
- 2. Normalize the logits using sigmoid so we get a well-defined probability distribution.

Convert the features to a number. The higher the number, the more confident we are that the document

1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$

We use GD. But what should we make the loss?

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$

We use GD. But what should we make the loss?

and labels. Assume that each datapoint is independent of the other.

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss?

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents and labels. Assume that each datapoint is independent of the other.

 $P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss? and labels. Assume that each datapoint is independent of the other.

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

How to set $\theta = (w, b)$?

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss?

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

setting the n-gram probabilities such that the probability of the train corpus is maximal.

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents and labels. Assume that each datapoint is independent of the other.

How to set $\theta = (w, b)$? Use the MLE principle! Set θ such that $P(\mathcal{D})$ is maximized. This is analogous to

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss? and labels. Assume that each datapoint is independent of the other.

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize: $-\prod_i P(c_i | d_i)$

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents

How to set $\theta = (w, b)$? Use the MLE principle! Set θ such that $P(\mathcal{D})$ is maximized. This is analogous to

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss? Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents and labels. Assume that each datapoint is independent of the other.

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize: $-\prod_i P(c_i)$ Since log is monotonic, this is equivalent to minim

How to set $\theta = (w, b)$? Use the MLE principle! Set θ such that $P(\mathcal{D})$ is maximized. This is analogous to

$$d_i$$
)
nizing: $-\sum_i \log P(c_i | d_i) \leftarrow \text{this is just CE loss!}$

Summary: we want to estimate P(c | d) using a model $\sigma(w \cdot x + b)$ Want to minimize: $-\sum \log P(c_i | d_i) \leftarrow$ this is just CE loss!

• Loss:
$$-\log \prod_{i=1}^{n} P(y_i | x_i) = -\sum_{i=1}^{n} \log \frac{1}{2}$$

$$L_{CE} = -\sum_{i=1}^{n} [y_i \log y_i]$$

 $\log P(y_i | x_i)$

 $g\hat{y}_i + (1 - y_i)\log(1 - \hat{y}_i)]$

Summary: in our binary logistic regression using a model $\sigma(\mathbf{w} \cdot \mathbf{x} + b)$, our cross-entropy loss is

$$\mathscr{L}_{CE}(\mathbf{w},b) = -\frac{1}{n} \sum_{i=1}^{n} |$$

How do we differentiate this with gradient descent?

 $[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$

Summary: in our binary logistic regression using a model $\sigma(\mathbf{w} \cdot \mathbf{x} + b)$, our cross-entropy loss is

$$\mathscr{L}_{CE}(\mathbf{w},b) = -\frac{1}{n} \sum_{i=1}^{n} |$$

How do we differentiate this with gradient descent? We need to determine $\frac{d\mathscr{L}}{d\mathbf{w}}, \frac{d\mathscr{L}}{db}$

 $[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

 $\frac{d\mathscr{L}}{d\hat{y}_i} = -\frac{d}{d\hat{y}_i} \cdot \frac{1}{n} \sum_{i=1}^n \left[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) \right]$

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

$$\frac{d\mathscr{L}}{d\hat{y}_i} = -\frac{d}{d\hat{y}_i} \cdot \frac{1}{n} \sum_{j=1}^n \left[\frac{1}{n} - \frac{1}{n} \left[\frac{y_i}{\hat{y}_i} - \frac{1}{n} \right] \right]$$

 $[y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j)]$

$$\frac{d}{dx}\log(x) = \frac{1}{x}$$

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

$$\frac{d\mathscr{L}}{d\hat{y}_i} = -\frac{d}{d\hat{y}_i} \cdot \frac{1}{n} \sum_{j=1}^n [y_j \log y_j]$$
$$= -\frac{1}{n} \left[\frac{y_i}{\hat{y}_i} - \frac{1 - y_i}{1 - \hat{y}_i} \right]$$

Let $z_i = \mathbf{w} \cdot \mathbf{x}_i + b$, so $\hat{y}_i = \sigma(z_i)$. Differentiating with respect to z_i gives

 $y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j)]$

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

$$\frac{d\mathscr{L}}{d\hat{y}_i} = -\frac{d}{d\hat{y}_i} \cdot \frac{1}{n} \sum_{j=1}^n [y_j \log y_j]$$
$$= -\frac{1}{n} \left[\frac{y_i}{\hat{y}_i} - \frac{1-y_i}{1-\hat{y}_i} \right]$$

Let $z_i = \mathbf{w} \cdot \mathbf{x}_i + b$, so $\hat{y}_i = \sigma(z_i)$. Differentiating with respect to z_i gives

$$\frac{d\hat{y}_i}{dz_i} = \sigma(z_i)(1 - \sigma(z_i)) = \hat{y}_i(1 - \hat{y}_i)$$

 $y_j \log \hat{y}_j + (1 - y_j) \log(1 - \hat{y}_j)]$

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

$$\frac{d\mathscr{L}}{d\hat{y}_i} = -\frac{d}{d\hat{y}_i} \cdot \frac{1}{n} \sum_{j=1}^n [y_j \log y_j]$$
$$= -\frac{1}{n} \left[\frac{y_i}{\hat{y}_i} - \frac{1 - y_i}{1 - \hat{y}_i} \right]$$

Let $z_i = \mathbf{w} \cdot \mathbf{x}_i + b$, so $\hat{y}_i = \sigma(z_i)$. Differentiating with respect to z_i gives $\frac{d\hat{y}_i}{dz_i} = \sigma(z_i)(1)$

All in all, the derivative with respect to z_i is

$$\frac{d\mathscr{L}}{dz_i} = \frac{d\mathscr{L}}{d\hat{y}_i} \frac{d\hat{y}_i}{dz_i} = -\frac{1}{n} \left[\frac{y_i}{\hat{y}_i} \right]$$

 $g \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$

$$-\sigma(z_i)) = \hat{y}_i(1 - \hat{y}_i)$$

$$-\frac{1-y_i}{1-\hat{y}_i} \int \hat{y}_i (1-\hat{y}_i) =$$

First we calculate gradient of \mathscr{L} with respect to a specific \hat{y}_i using the chain rule.

$$\frac{d\mathscr{L}}{d\hat{y}_i} = -\frac{d}{d\hat{y}_i} \cdot \frac{1}{n} \sum_{j=1}^n [y_j \log y_j]$$
$$= -\frac{1}{n} \left[\frac{y_i}{\hat{y}_i} - \frac{1 - y_i}{1 - \hat{y}_i} \right]$$

Let $z_i = \mathbf{w} \cdot \mathbf{x}_i + b$, so $\hat{y}_i = \sigma(z_i)$. Differentiating with respect to z_i gives $\frac{d\hat{y}_i}{dz_i} = \sigma(z_i)(1)$

All in all, the derivative with respect to z_i is

$$\frac{d\mathscr{L}}{dz_i} = \frac{d\mathscr{L}}{d\hat{y}_i}\frac{d\hat{y}_i}{dz_i} = -\frac{1}{n} \begin{bmatrix} \frac{y_i}{\hat{y}_i} \\ \hat{y}_i \end{bmatrix}$$

 $g \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$

$$-\sigma(z_i)) = \hat{y}_i(1-\hat{y}_i)$$

$$-\frac{1-y_i}{1-\hat{y}_i} \int \hat{y}_i (1-\hat{y}_i) = \frac{1}{n} \left[\hat{y}_i - y_i \right]$$

Now take derivative with respect to \mathbf{w} and b for the final update equations.

Now take derivative with respect to \mathbf{w} and b for the final update equations.

dz_i		d
$d\mathbf{w}$	_	dw

$$\frac{-(\mathbf{w} \cdot \mathbf{x}_i + b) = \mathbf{x}_i}{2}$$

Now take derivative with respect to \mathbf{w} and b for the final update equations.

dz_i	d
$d\mathbf{w}$	dw
dz_i	d
\overline{db}	$\frac{1}{db}$

$$\frac{b}{\mathbf{w}}(\mathbf{w} \cdot \mathbf{x}_i + b) = \mathbf{x}_i$$

 $\frac{b}{b}(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$

Now take derivative with respect to \mathbf{w} and b for the final update equations.

dz_i	
$d\mathbf{w}$	$d\mathbf{w}$
dz_i	d
\overline{db} –	$\frac{1}{db}$

Combining all together gives

 $d\mathscr{L}_{CE} =$ $d\mathbf{w}$

 $d\mathscr{L}_{CE}$ = db

$$\frac{b}{\mathbf{w}}(\mathbf{w} \cdot \mathbf{x}_i + b) = \mathbf{x}_i$$

$$-(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

$$\frac{1}{n} \sum_{i=1}^{n} [\hat{y}_i - y_i] \mathbf{x}_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} [\hat{y}_i - y_i]$$

maximizes P(c | d). Let's say we estimating P(d | c) reliably is hard, we will need to estimate P(c | d) directly.

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
 - **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

- maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly. **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number. **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- 5. Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
 - **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes P(c | d). Let's say we estimating P(d | c) reliably is hard, we will need to estimate P(c | d) directly.

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

2. For stability and convenience we can take the log to minimize $-\sum \log P(c_i | d_i)$ this is CE loss

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
 - **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- 5. Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
 - **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)
 - 2. For stability and convenience we can take the

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

e log to minimize –
$$\sum_{i} \log P(c_i | d_i)$$
 this is CE loss

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.

Logistic Regression: what's good and what's not

- More freedom in designing features
 - No strong independence assumptions like Naive Bayes

- Can even have the same feature twice! (why?)
- Interpreting learned weights can be challenging

May not work well on small datasets (compared to Naive Bayes)

Multiclass Classification

- Supervised learning task (e.g. input-output pairs: $\vec{\mathbf{x}}, \mathbf{y}$
- Predict one of k categories (i.e. **classes**)
- Typically, $y \in \{0, 1, 2, ..., k 1\}$
- Examples:
 - Blood typing: Medical information \rightarrow {A, B, AB, **O**}
 - Digit recognition: image \rightarrow {0, 1, ..., 9}
 - Object recognition: image \rightarrow {"golden retriever", "laptop", ...}
 - Weather prediction: weather metrics \rightarrow {"sunny", "cloudy", "rainy", "snowy"}

MNIST dataset

From Binary to Multiclass Classification

Extension of logistic regression to multiclass setting Given $\vec{\mathbf{x}} \in \mathbb{R}^d$, learn k vectors $\theta_1, \theta_2, \dots, \theta_k \in \mathbb{R}^d$: $\Pr[y = i \text{ on } \vec{\mathbf{x}}] = \operatorname{softmax}(\vec{\mathbf{z}}) = \frac{\exp(\theta_i \cdot \vec{\mathbf{x}})}{\sum_{j=1}^k \exp(\theta_j \cdot \vec{\mathbf{x}})}, \text{ where } \vec{\mathbf{z}} = \theta_i \cdot \vec{\mathbf{x}}$ Note about softmax function: $\sum_{i=1}^{k} \operatorname{softmax}(\theta_i \cdot \vec{\mathbf{x}}) = 1$ i=1

(e.g. sum of softmax probabilities for all k classes is 1).

 θ : \theta in Latex

 $\theta_1, \ldots, \theta_k$ are generalizations of $\vec{\mathbf{w}}$ in logistic regression for binary classification.

Multinomial Logistic Regression

Logistic regression Given $\vec{\mathbf{x}} \in \mathbb{R}^d$ and $y \in \{1, -1\}$, learn $\vec{\mathbf{w}} \in \mathbb{R}^d$.

$$\Pr[y \text{ given } \vec{\mathbf{x}}] = \sigma(z)$$

$$= \frac{1}{1 + \exp(-y(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}))}$$
where $z = y(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}})$.
$$\sigma(z) = \frac{1}{1 + e^{-z}} \in [0, 1]$$

Multinomial Logistic Regression

Logistic regression Given $\vec{\mathbf{x}} \in \mathbb{R}^d$ and $y \in \{1, -1\}$, learn $\vec{\mathbf{w}} \in \mathbb{R}^d$.

$$\Pr[y \text{ given } \vec{\mathbf{x}}] = \sigma(z)$$

$$= \frac{1}{1 + \exp(-y(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}}))}$$
where $z = y(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}})$.
$$\sigma(z) = \frac{1}{1 + e^{-z}} \in [0, 1]$$

Multinomial logistic regression

Given $\vec{\mathbf{x}} \in \mathbb{R}^d$ and $y \in \{0, ..., k-1\}$, learn k vectors $\vec{\mathbf{w}}^{(0)}, \vec{\mathbf{w}}^{(1)}, ..., \vec{\mathbf{w}}^{(k-1)} \in \mathbb{R}^d$.

 $\Pr[y = i \text{ given } \vec{\mathbf{x}}] = \operatorname{softmax}(\vec{\mathbf{z}})$

$$\exp(\overrightarrow{\mathbf{w}}^{(i)}\cdot\overrightarrow{\mathbf{x}})$$

$$\sum_{j=0}^{k-1} \exp(\vec{\mathbf{w}}^{(j)} \cdot \vec{\mathbf{x}})$$

where $\vec{\mathbf{z}} = \vec{\mathbf{w}}^{(i)} \cdot \vec{\mathbf{x}}$.

- softmax(\vec{z}) $\in [0,1]$
- $\sum_{i=0}^{k-1} \operatorname{softmax}(\theta_i \cdot \vec{\mathbf{x}}) = 1$
- (In CN: $\vec{\mathbf{w}}^{(i)} = \vec{\theta}^i$, θ : \theta in Latex)