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Review Question
You train an n-gram model on some training corpus  using counts

. To prevent (possible) infinite perplexity on the test 

corpus , you apply Laplace smoothing. Let  be the unsmoothed probabilities and 
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This is undetermined! It’s not clear that the test corpus will have infinite perplexity. It is possible that the 
test corpus is very similar to the train corpus, and smoothing will cause its probability to drop.


3. 

D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

c(w1, . . . , wn−1)
Dt

ppl(D), ppl(Dt)
ppl′￼(D), ppl′￼(Dt)

ppl′￼(D) ≥ ppl(D)

ppl′￼(Dt) < ppl(Dt)

ppl(D) < ppl(Dt)



Review Question
You train an n-gram model on some training corpus  using counts

. To prevent (possible) infinite perplexity on the test corpus , 

you apply Laplace smoothing. Let  be perplexities of the unsmoothed model and 
 of the smoothed model. Is the following T, F or undetermined (depends on model, data, 

n, etc)?


1.  - T


2.  - U


3. 

Undetermined. A test corpus consisting solely of high-frequency n-grams might have a higher probability 


D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

c(w1, . . . , wn−1)
Dt

ppl(D), ppl(Dt)
ppl′￼(D), ppl′￼(Dt)

ppl′￼(D) ≥ ppl(D)

ppl′￼(Dt) < ppl(Dt)

ppl(D) < ppl(Dt)



Todays Topics
Given a document  and a set of classes , we want to find the class  
that maximizes . Two ways to do this: 

Naive Bayes <— Covered in lecture in great detail! 

Logistic Regression
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Logistic Regression: Features

Document 
d Features LR Model P(c |d)

The features to use is a design decision. A 
natural default is to use a vector 
where each dim is the counts of one word 
in the vocabulary. (BOW)

x ∈ ℝ|V|
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Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 

1. Convert the features to a number. The higher the number, the more confident we are that the document 

belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.


1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid
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Document 
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w ⋅ x + b
σ(w ⋅ x + b)

1 − σ(w ⋅ x + b)
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Summary: we want to estimate  using a model  

Want to minimize:     this is just CE loss!
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Summary: in our binary logistic regression using a model , our cross-entropy loss is 





How do we differentiate this with gradient descent? We need to determine  
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6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.
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Multiclass Classification
• Supervised learning task (e.g. input-output pairs: 

) 
• Predict one of  categories (i.e. classes) 
• Typically,  
• Examples: 
- Blood typing: Medical information → {A, B, AB, 

O} 
- Digit recognition: image → {0, 1, …, 9} 
- Object recognition: image →  

{“golden retriever”, “laptop”, …} 
- Weather prediction: weather metrics → 

{“sunny”, “cloudy”, “rainy”, “snowy”}

x⃗, y
k

y ∈ {0,1,2,…, k − 1}

MNIST dataset



From Binary to Multiclass Classification
Extension of logistic regression to multiclass setting 
Given , learn  vectors : 

, where  

Note about softmax function:   

(e.g. sum of softmax probabilities for all  classes is 1). 
  

: \theta in Latex 
 

 are generalizations of  in logistic regression for binary classification.

x⃗ ∈ ℝd k θ1, θ2, …, θk ∈ ℝd

Pr[y = i on x⃗] = softmax( ⃗z) =
exp(θi ⋅ x⃗)

∑k
j=1 exp(θj ⋅ x⃗)

⃗z = θi ⋅ x⃗

k

∑
i=1

softmax(θi ⋅ x⃗) = 1

k

θ

θ1, …, θk ⃗w



Multinomial Logistic Regression

Logistic regression 
Given  and ,  
learn . 
 

 

    where . 
 

x⃗ ∈ ℝd y ∈ {1, − 1}
⃗w ∈ ℝd

Pr[y given x⃗] = σ(z)

=
1

1 + exp(−y( ⃗w ⋅ x⃗))
z = y( ⃗w ⋅ x⃗)

σ(z) =
1

1 + e−z
∈ [0,1]



Multinomial Logistic Regression
Multinomial logistic regression 
Given  and ,  
learn  vectors . 
 

    

    where . 
•  
•   

• (In CN: , : \theta in Latex)

x⃗ ∈ ℝd y ∈ {0,…, k − 1}
k ⃗w (0), ⃗w (1), …, ⃗w (k−1) ∈ ℝd

Pr[y = i given x⃗] = softmax( ⃗z)

=
exp( ⃗w (i) ⋅ x⃗)

∑k−1
j=0 exp( ⃗w ( j) ⋅ x⃗)

⃗z = ⃗w (i) ⋅ x⃗
softmax( ⃗z) ∈ [0,1]
Σk−1

i=0 softmax(θi ⋅ x⃗) = 1
⃗w (i) = ⃗θi θ

Logistic regression 
Given  and ,  
learn . 
 

 

    where . 
 

x⃗ ∈ ℝd y ∈ {1, − 1}
⃗w ∈ ℝd

Pr[y given x⃗] = σ(z)

=
1

1 + exp(−y( ⃗w ⋅ x⃗))
z = y( ⃗w ⋅ x⃗)

σ(z) =
1

1 + e−z
∈ [0,1]


