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Review Question

You train an n-gram model on some training corpus D using counts
cWiy.oo W)

Pw, |wy,... . To prevent (possible) infinite perplexity on the test

’Wn—l) —
ZvEV cWi, ..., W,_1,V)

corpus D,, you apply Laplace smoothing. Let P(D), P(D,) be the unsmoothed probabilities and
P'(D), P'(D,) be the smoothed probabilities.



Review Question

You train an n-gram model on some training corpus D using counts

C(W19° °°9Wn) : T :
Pw, |wi,...,w, )= . To prevent (possible) infinite perplexity on the test corpus D,
cWi,...,W,_1)

you apply Laplace smoothing. Let ppl(D), ppl(D,) be perplexities of the unsmoothed model and

ppl'(D), ppl'(D,) of the smoothed model. Is the following T, F or undetermined (depends on model, data,
n, etc)?

1. ppl'(D) > ppl(D)
2. ppl'(D,) < ppl(D,)

3. ppl(D) < ppl(D))



Review Question

You train an n-gram model on some training corpus D using counts
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c(Wiy.ooow,_1)

apply Laplace smoothing. Let ppl(D), ppl(D,) be perplexities of the unsmoothed model and ppl'(D), ppl'(D,)
of the smoothed model. Is the following T, F or undetermined (depends on model, data, n, etc)?

Pw, |wi,...,w, ;)= . To prevent (possible) infinite perplexity on the test corpus D,, you

1. ppl'(D) > ppl(D)
This is true! Remember that setting the probability using counts (above) is the MLE estimate, which means
that P(D) cannot increase under any other distribution for P(w, |w,...,w,_;)
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Review Question

You train an n-gram model on some training corpus D using counts

cwy, ..., W,)
Pw, |wi,...,w, 1) = ! . To prevent (possible) infinite perplexity on the test corpus D,, you
cWiy.o o, W,_1)

apply Laplace smoothing. Let ppl(D), ppl(D,) be perplexities of the unsmoothed model and

ppl'(D), ppl'(D,) of the smoothed model. Is the following T, F or undetermined (depends on model, data, n,
etc)?

1.ppl'(D) = ppl(D) - T

2. ppl'(D,) < ppl(D))

This is undetermined! It’'s not clear that the test corpus will have infinite perplexity. It is possible that the
test corpus is very similar to the train corpus, and smoothing will cause its probabillity to drop.

3. ppl(D) < ppl(D,)



Review Question

You train an n-gram model on some training corpus D using counts

C(W19° °°9Wn) : T :
Pw, |wi,...,w, )= . To prevent (possible) infinite perplexity on the test corpus D,
cWi,...,W,_1)

you apply Laplace smoothing. Let ppl(D), ppl(D,) be perplexities of the unsmoothed model and

ppl'(D), ppl'(D,) of the smoothed model. Is the following T, F or undetermined (depends on model, data,
n, etc)?

1.ppl'(D) 2 ppl(D) - T
2. ppl'(D,) < ppl(D,) - U

3. ppl(D) < ppl(D,)
Undetermined. A test corpus consisting solely of high-frequency n-grams might have a higher probability



Todays Topics

Given a document d = Wi, ..., Wgand a set of classes C = {cl, Ce ey Cm}, we want to find the class c;
that maximizes P(c | d). Two ways to do this:

Naive Bayes <— Covered in lecture in great detail!

Logistic Regression
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Given a document d = Wi, ..., Wgand a set of classes C = {cl, Ce ey Cm}, we want to find the class c;
that maximizes P(c | d). Two ways to do this:

Naive Bayes

Logistic Regression <— Focus for today’s Precept
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Logistic Regression: Features

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢

that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c |d) given a set of

features constructed from the input document d.

Document

7 Features LR Model

Var Definition

X1 count(positive lexicon) € doc)
X7 count(negative lexicon) € doc)
(1 if “no” € doc

| 0 otherwise

x4  count(1st and 2nd pronouns € doc)
[ 1 if “!” e doc

| 0 otherwise

x¢  log(word count of doc)

This is the feature vector x for some input
document d




Logistic Regression: Features

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢

that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c |d) given a set of

features constructed from the input document d.

D t

Var Definition Value
X1 count(positive lexicon) € doc) 3
X Cf)t;nt(;legative lsxicom € doc) 2 The features to use is a design decision. A
if “no” € doc
3 0 otherwise ‘ natural default is to use a vector x € R!"!
Ist and 2nd sed 3 : :
e where each dim is the counts of one word
< . 0 :
1 0 otherwise in the vocabulary. (BOW)

x¢  log(word count of doc) In(64) =4.15
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Logistic Regression: LR Model

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢
that maximizes P(c | d)

Now given some feature vector x how do we turn this to a probability?

1. Convert the features to a number. The higher the number, the more confident we are that the document
belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.
1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

w-x+b
1 —o(w- x+b)
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Logistic Regression: How do we set w, b ?

Summary: we want to estimate P(c | d) using a model o(w - x + b)

We use GD. But what should we make the loss?

Let our train dataset be & = {(d,, ¢y),...,(d ,c,)}. Let's find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

P(D) = P(cy|dy)---P(c,|d,) = 11L.P(c;| d)

How to set @ = (w, b)? Use the MLE principle! Set 8 such that P(2) is maximized. This is analogous to
setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize: —I1L.P(c;|d.)

Since log is monotonic, this is equivalent to minimizing: — Z log P(c;|d;) <« thisis just CE loss!

l



Logistic Regression: How do we set w, b ?

Summary: we want to estimate P(c | d) using a model o(w - x + b)

Want to minimize: — )" log P(c;|d}) < this is just GE loss!

~ Loss: —logHP(y,-\x,-) = — Z log P(y;| x;)
i=1 i=1

Leg=— ) [ylog$;+ (1 — ylog(l — 5]
=1



Logistic Regression: Gradient of Cross-entropy

Summary: in our binary logistic regression using a model 6(W - X + b), our cross-entropy loss is
1 n
LW, b) === ) [ylog§;+ (1 = ylog(l - 3]
i=1

How do we differentiate this with gradient descent?



Logistic Regression: Gradient of Cross-entropy

Summary: in our binary logistic regression using a model 6(W - X + b), our cross-entropy loss is

1 « A A
Lepw,b) = —— ) [ylog$; + (1 - y)log(l — $,)]
n =1

How do we differentiate this with gradient descent?
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Logistic Regression: Gradient of Cross-entropy

First we calculate gradient of &£ with respect to a specific y; using the chain rule.

iz  d 1

5 = & ;Z [y;logy; + (1 — y)log(1l — y))]

j=1

R R I =y
o on |y 1-3,




Logistic Regression: Gradient of Cross-entropy

First we calculate gradient of &£ with respect to a specific y; using the chain rule.
dZ d 1 ¢«

dy; dy; n =

R R I =y
o on |y 1-3,

Let zz = W - X. + b, so y; = 6(z;). Differentiating with respect to z; gives

[yjlogy; + (1 —yplog(l —y;)]
1
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Logistic Regression: Gradient of Cross-entropy

First we calculate gradient of & with respect to a specific ¥, using the chain rule.

dZ .

R R 1—%
o on |y 1-3,

Let zz = W - X. + b, so y; = 6(z;). Differentiating with respect to z; gives

dy; 3 V
y — G(Zi)(l — G(Zl’)) — y,(l T yl)
<

All in all, the derivative with respect to z; Is

iF 4z dy; 1 [y,- -y,

d_Zi B dj\}l dZi n

:|yz(1_y)__[yz yl]
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Now take derivative with respect to w and b for the final update equations.
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Logistic Regression: Gradient of Cross-entropy

Now take derivative with respect to w and b for the final update equations.

dz, d
dw dw
dz, d
—=—(Ww-X;+0) =1
db db

Combining all together gives

A 1 «
= =— 2 Ly — vilx;

dw n 4
=1

ALy 13
m _;izzl[yi Vil
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2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
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Logistic Regression: Summary

1. Given adocumentd = w,...,wg and a set of classes ¢ = {cy,...,C,,}, we want to find the class c that

maximizes P(c|d). Let’s say we estimating P(d | ¢) reliably is hard, we will need to estimate P(c | d) directly.
2. Want to turn d into a vector x because then we can operate on it more conveniently.

1. We can use a BOW, where eachdiminx & R!Vl'is the # of times a word in V appears
2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

3. Somehow we need to turn X into a single number, because P(c|d) is a single number.
1. Let’s be as lazy as possible and just take a linear combination of the features: w - x + b
4. Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: o(x) = (1 + ¢™)~!
1. The probability for one class is o(w - x 4+ b), so the other class must have prob 1 — o(w - x + b)
5. Given our model, we can estimate the probability of a train set under the model P(&)
1. We will set w, b so that P(2) = IL.P(c;|d.) is maximal (MLE principle)
2. For stability and convenience we can take the log to minimize — Z log P(c;|d;) thisis CE loss

l

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.



Logistic Regression: what’s good and what’s not

e More freedom in designing features

* No strong independence assumptions like Naive Bayes

e Can even have the same feature twice! (why?)
* May not work well on small datasets (compared to Naive Bayes)

* Interpreting learned weights can be challenging



Multiclass Classification

® Supervised learning task (e.g. input-output pairs:
X, Y)

* Predict one of k categories (i.e. classes)

e Typically, y € {0,1,2,....,k— 1}

* Examples:

- Blood typing: Medical information — {A, B, AB,
O}

- Digit recognition: image — {0, 1, ..., 9}

- Object recognition: image —

)) 1]

{“golden retriever”, “laptop”, ...}

- Weather prediction: weather metrics —

)) 1

{“sunny”,

)) 11 )) 11

cloudy”, “rainy”, “snowy”}
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From Binary to Multiclass Classification

Extension of logistic regression to multiclass setting

Given X € R?, learn k vectors 0,,0,,...,0, €l d.
Pr[y =i on X] = softmax(z) = - ,whereZ = 0, - X
ijl exp(d; - X)

k

Note about softmax function: Z softmax(f; - X) = 1
i=1
(e.g. sum of softmax probabilities for all k classes is 1).

@: \theta in Latex

0,, ..., 0, are generalizations of W in logistic regression for binary classification.



Multinomial Logistic Regression

Logistic regression

GivenX € R%andy € {1, — 1},

I%mWE.¢

Pr[y given X] = 0(2)
|

"1 + exp(—y(W - X))

where z = (W - X).

1
e [0,1]
+ e

6(2) = 1



Multinomial Logistic Regression

Logistic regression Multinomial logistic regression

GivenX € R%andy € {1, — 1}, GivenX € R%andy € {0,...,k— 1},
earn W € R4 earn k vectors WO w) . wk-D e R4
Pr[y given }_E] = 0(2) Pr[y =1 given X]| = softmax(i)
B | B exp(w® - X)
B - T f—1 NN
_1) +_)3XP( Y(W - X)) Zj:() exp(wl) - X)
where Z = y(W - X). whereZ = w . X,
e softmax(z) € [0,1]
0(z) = |+ o e [0,1] . Zi:olsoftmax(ﬁi .X) =1

e (NCN: WO = & @: \theta in Latex)



