COS 484

Natural Language Processing

| 9: Recurrent neural networks

Spring 2024

(Some slides adapted from Chris Manning, Abigail See)

Midterm logistics

A 3-hour timed exam from March 7th 1:30pm (Thu) to March 8th 4:30pm (Fri)

 \We will provide email support for the following times:
Mar 7, 1:30-3:30pm
Mar 7, 5:30-7:30pm
Mar 8, 8-10am
Mar 8, 10am-12pm
Mar 8, 1pm-3pm

e Open-book (lecture slides & readings), no internet / ChatGPT allowed
* Practice midterms have been released on Ed
o All topics up to today’s lecture will be covered in the midterm

Recurrent neural networks (RNNs)

How can we model sequences using neural networks?

ﬁ@_.ﬁ@ ‘%@
------ @O @ @

MEMM

e Recurrent neural networks = A class of neural networks used to model sequences,
allowing to handle variable length inputs

e \ery crucial in NLP problems (different from images) because sentences/paragraphs are
variable-length, sequential inputs

Recap: n-gram vs neural language models

Language models: Given x, X, ..., X, € V, the goal is to model:

n
P(XI,X2, ...,xn) — HP(XZ | xla °°°9xi—1)
=1

Dilemma:
N-gram models: e \We need to model bigger context!
count(the cat sat . iliti
P(sat|the cat) = () The _of probabilities that we nee_d
count(the cat) to estimate grow exponentially with

window size!

? 7
G @R c

As-the-proctorstartedthe-eloek—the students opened their

Recap: Feedforward neural language models

Feedforward neural language models approximate the probability based on
the previous m (e.qg., 5) words - m is a hyper-parameter!

n
P(Xx{, %, ..., X,) & HP(xl- | X g s X 1)
i=1

P(mat | the cat sat on the) = ?

d: word embedding size

h: hidden size

It is a |V|-way classification problem!

the —

cat —»

sat —»

on —»

the—>

o)%&

(©o00) (©00) (0o0) (oo (©O

N\ /L

~
S¥

(O0O0000000) =

(O0O00O00 000

>

Recap: Feedforward neural language models

P(mat | the cat sat onthe) =7 d: word embedding size h: hidden size

SH

e |[nput layer (m= 5); R
@
x = [e(the); e(cat); e(sat); e(on); e(the)] € R the = |9
QJ R5d Rh
o .] 6 PN\ N\
Hidden layer: cat =0 0 0
h = tanh(Wx + b) € R” :\ 5 o
O O O
/ —
e QOutput layer sat »\8/8 5
. O O
z = Uh ¢ RV on (37 /& L
P(w =1 | the cat sat on the) =
ez’i the-' O
— softmax;(z) = >

Dk €7F

Recap: Feedforward neural language models

The Fat Cat Sat on the Mat is a 1996
children's book by Nurit Karlin. Published by
Harper Collins as part of the reading

the fat cat sat on — the
fat cat sat on the — mat
readiness program, the book stresses the cat sat on the mat — is

ability to read words of specific structure, sat on the mat is — a
such as -at.

Limitations? WI[: ,3d : 5d]
: . . the fat cat — the
W linearly scales with the context size m
fat cat the — mat
e The models learns separate patterns cat the mat — is
for different positions! W/: ,1d : 3d] N\

“sat on” corresponds to
different parameters in W

Recurrent neural networks (RNNs)

A family of neural networks that can handle variable length inputs

rec

A function: y = RNN(Xl,Xz, ...,Xn) e R where X1, ..., X, € R4

Core idea: apply the same weights repeatedly at different positions!

Recurrent neural networks (RNNs)

Highly effective approach for language modeling, sequence tagging, text classification:

Language modeling

>
c
<
~
c
il

<
~
p—
A —
N
—~
B
A —
N
—~
w
p—
Ny
P
i~
o

oool—{eeee
000l —eeeel—<

el e(2) e3) e(@)|

0000 — 0000 ——™

O000|—00@®@0

EoT

—>
&

Te

the students opened their exams

2D @ e

2

4)

Sequence tagging

Y1 YQ Y3 y4 y5
p ey
Part of Speech Tagger

Jal\et wliII bet|ck tl'le bliII

X X X, X X

1 2 4 5

Text classification

S
B

]

The movie sucks

|

Recurrent neural networks (RNNs)

Form the basis for the modern approaches to machine translation, question
answering and dialogue systems:

Je suis étudiant </s>

AT.

A,
b
I

attention
sequence-to-sequence models vector

context

vector
attention ~~“% o
; 6 Fa i :0.3: :0.
weights . o “

I am a student <s> Je suis étudiant

(Sutskever et al., 2014). Sequence to Sequence Learning with Neural Networks

Simple recurrent neural networks

A function: y = RNN(Xl,Xz, ...,Xn) e R”" where X1, ..., X, € R4

h, € R" is an initial state
h, = f(h,_;,x,) € R”

h, : hidden states which store information from X, to X,

Simple RNNs:

2: nonlinearity (e.g. tanh, RelLU),

h, = g(Wh,_, + Ux, + b) € R"

WeR™ UeR™ pel

This model contains & X (h + d + 1) parameters, and
optionally h for h, (a common way is just to set h,, as ()

Simple recurrent neural networks
h, = g(Wh,_, + Ux, + b) € R”

Key idea: apply the same weights W, U, b repeatedly

outputs { 2 Y y3 Y4

(optional)

hidden states <

Input sequence
(any length) {

RNNs vs Feedforward NNs

o

Feed-Forward Neural Network

h, = g(Wx + b)) e RM

h, = g(W®h,

b(2)) = ha

Recurrent Neural Network

h, = g(Wh,_, + Ux, + b) € R"

Recurrent neural language models (RNNLMs)

Recurrent neural language models (RNNLMs)

Pwi,wy, ...,w) = Pw)) X Pwy | w)) X Pwy | wi, wy) X ... X P(w, | wi,wy, ..o,w)

No Markov

= P(w; | hy) X P(w, [hy) X P(ws | hy) X ... X P(w, | h,_;) assumption here!

> <D
=

S

=

Denote §, = softmax(W h), W & RIVI*

>

=>> ces

Y

+°0000|—{0000]

>

(e00@0| — S~

— j\fo(wl) X yl(Wz) D ¢ j\fn_l(wn)

T 1
T

the students opened their exams

X y{(w,) = the probability of w,

X3

)L S !
iwo lWO lWO
h, h, h,

O O O
O O O
O O O
O O O
o @) o
o O o
@ @) @
@) @)

<>
-)

Recurrent neural language models (RNNLMs)

oy

>

>

=>> ces

T
To

X3

+°0000)—{0c00]

Y2 Y3 Y4
W W W
h, | ¢ hzl 0 h3l ¢ h4l ¢
O @) O
O O O
O O O
O @) O
O @ O
O O e,
O O O
O O

T

X,

T e

the students opened their exams

h,= g(Wh,_, +Ux, +b) €

y, = softmax(W h,)

Training loss:

Trainable parameters:

0={W,Ub,W K}

RNNLMs: weight tying

P 9, Vs V4 word embeddings (= input embeddings):
w, Tw, |w, 1w, E € R!VIX
h(1) h(2) h(3) h(4)
: O O O
lo—lel—lo—le— - output embeddings:
% O O O
1 T W, e RIVXh
o O O O 0
e(1) 8 e(2) 8 e(3) 8 e 8
r ¥ 8 G - ' Eand W,
If d = h, we can just merge k. and WV)|
Te fe o s
e ctes opeed itk emms 0 ={W.U,b,E}

It works better empirically and becomes a common practice

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

KNb5: Kneser-Ney 5-gram

Modedl [Tndividual

KNS5 141.2
KNS5 + cache 125.7

Feedforward NNLM

Log-bilinear NNLM
Svntactical NNLM
Recurrent NNLM

RNN-LDA LM 113.7

(Mikolov and Zweig, 2012). Context dependent recurrent neural network language model

https://ieeexplore.ieee.org/author/37298983000

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

Model #Param Validation Test
| Mikolov & Zweig (2012) — RNN-LDA + KN-5 + cache OM+ - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) — Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) — CharCNN 19M - 78.9
Merity et al. (2016) — Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2016) — LSTM + continuous cache pointerT - - 72.1
Inan et al. (2016) — Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) — Variational RHN 23M 67.9 65.4
Zoph & Le (2016) — NAS Cell 25M - 64.0
Melis et al. (2017) — 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017) — AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) - AWD-LSTM 24M 60.0 57.3
Ours — AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours - AWD-LSTM-MoS 22M 56.54 54.44
Merity et al. (2017) - AWD-LSTM + continuous cache pointer’ 24M 53.9 52.8
Krause et al. (2017) — AWD-LSTM + dynamic evaluation' 24M 51.6 51.1
| Ours — AWD-LSTM-MoS + dynamic evaluation’ 22M 48.33 47.69 |

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

RNNSs: pros and cons

Advantages:
e (Can process any length input
e Computation for step t can (in theory) use information from many steps back
* Model size doesn’t increase for longer input context

Disadvantages:
e Recurrent computation is slow (can’t parallelize) «—— Iransformers can!

e |n practice, difficult to access information from many steps back
(optimization issue) <«—— We will see some advanced RNNSs (e.g., LSTMs, GRUs)

Training RNINLMs

e Forward pass + backward pass (compute gradients)
* Forward pass:

Fort=1,2,...,n
y = — log sottmax(W _h,_,)(w,)

X, = e(w,)

h, =g(Wh,_, + Ux, +b)
|

L=L+—y
n

/

accumulate loss

What is the running time of a forward pass? m

What is the running time of a forward pass? L=0 hy=0

Fort =1, 2, ..., n

(@) Ohx(d+h+|V])) y = — log softmax(W _h,_,)(w,)

b Omnxhxd+h+|V])

X, = e(w,)
D O0OmX({d+h+|V]))
(d) O(n X h X (d + h)) h, = g(W{lt—l + Ux, + b)
L=L+—y
n

The answer is (b).

n = number of time steps
h = hidden dimension

d = word vector dimension
V = output vocabulary

Training RNINLMs

e Backward pass:
e Backpropagation? Yes, but not that simple!

DK we W@ O
|
(D@ g

e The algorithm is called Backpropagation Through Time (BPTT).

Backpropagation through time

hl — g 0 —+ UXl + b)
h; = g(Wh, + Ux; +b) y; = softmax(W h,)
L; = —logy;(wy)
oL,
First, compute gradient with respect to hidden vector of last time step: 6T
3
OL; 0Ly ohy 0Ly ohy oh, 0L, ohy oh, oh,
OW oh; OW = oh; oh, OW oh; oh, oh, oW
oL] &«

More generally,

oW

n

22

=1 k=1

oh, | 1+ oh_ | oW

If kK and t are far away, the gradients can grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

What if gradients become too large or small?

What will happen if the gradients become too large or too small?

a) If too large, the model will become difficult to converge
b) If too small, the model can’t capture long-term dependencies

(
(
(c) If too small, the model may capture a wrong recent dependency
(d) All of the above

All of these are correct, so (d) ©

Backpropagation through time

One solution for gradient exploding is called gradient clipping — if the norm of the
gradient is greater than some threshold, scale it down before applying SGD update.

Algorithm 1 Pseudo-code for norm clipping
A o0&
& < B0
if ||g|| > threshold then

A threshold ~
(-~
5 gl S

end if

Intuition: take a step in the same direction but a smaller step!

Gradient vanishing is a harder problem to solve:

As the proctor started the clock, the students opened their

Truncated backpropagation through time

e Backpropagation is very expensive if you handle long sequences

 Run forward and backward through chunks of the sequence instead of whole sequence

e Carry hidden states forward in time forever, but only back-propagate for some smaller number of steps

Applications and variants

Application: Text generation

favorite season is spring
T ample T ample T ample T ample]
| | You can generate text by repeated sampling.
- (1 2 (3) (4
J Y Y Sampled output is next step’s input.
U U U
h(”,)_\ h(1) h(2) h(3) h(4)
O O O O O
@) Wh>: Wh). Wh). Wh)‘ Wh)
O O O O
L O O O O
8 O O O
(1) (2)| © (3)| © (4)| ©
€1e|l el ¢ le|l ° e
O O O O

Bl
L

Te T

my favorite season is spring

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

You can train an RNN-LM on any kind of text, then generate text in that style.

\begin{proof}

We may assume that S\mathcal{I} is an abelian sheaf on $\mathcal{C}S.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let $\mathfrak g$ be an abelian sheaf on $XS.

Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let \mathcal{F} be an abelian quasi-coherent sheaf on $\mathcal{C}S$.
Let \mathcal{F} be a coherent $\mathcal{O} X$-module. Then
\mathcal{F} is an abelian catenary over $\mathcal{C}S.

\item The following are equivalent

\begin{enumerate}

\item \mathcal{F} is an $\mathcal{0O} X$-module.

\end{lemma}

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

You can train an RNN-LM on any kind of text, then generate text in that style.

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will
not be able to get this done. The promise of the men and women who were still
going to take out the fact that the American people have fought to make sure
that they have to be able to protect our part. It was a chance to stand together
to completely look for the commitment to borrow from the American people.
And the fact is the men and women in uniform and the millions of our country
with the law system that we should be a strong stretcks of the forces that we can

afford to increase our spirit of the American people and the leadership of our
country who are on the Internet of American lives.

Thank you very much. God bless you, and God bless the United States of
America.

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal

Application: Sequence tagging

Input: a sentence of n words: Xy, ..., X,
Output: v, ..., y,,y: € 1 1,...C}

DT JJ NN VBN IN DT NN

P1T
Pt

the startled cat knocked over the vase

il
i

P(y; = k) = softmax, (W h,) W € R Cxh L=—— 2 log P(y; = k)

Application: Text Classification

Input: a sentence of n words

Output: y € {1,2,...,C}

-n

))

—> o —> —

o000 | —

0000

0000

the movie was terribly exciting !

P(y = k) = softmax,(W h) W_¢& REXA

L =—-1logP(y = c)

Multi-layer RNNs

* RNNs are already “deep” on one dimension (unroll over time steps)
* We can also make them “deep” in another dimension by applying multiple RNNs
 Multi-layer RNNs are also called stacked RNNSs.

Multi-layer RNNs

AAECEAEAE
|®
RNN layer 3 ® ® l @ 1 @ l @ ®
O @) O O O O
7 - 5
0 ° 0 0 0 0
RNN layer 2 : : : > : : :
> 2 > 2 > L The hidden states from RNN layer 1
o (o (e (@ ~ r are the inputs to RNN layer i + 1
RNN layer 1 : ,: ,: >: ,: 1:
/

the movie was terribly exciting

e In practice, using 2 to 4 layers is common (usually better than 1 layer)
e Transformer networks can be up to 24 layers with lots of skip-connections

Bidirectional RN Ns

Bidirectionality is important in language representations:

O 0 o 0 O o
O Q. 5 O O O O
O O O o O O
O O O O O O
T 17T 7T 17T 17T 7
the movie was terribly exciting /
terribly:

® left context “the movie was”

® right context “exciting !”

Bidirectional RN Ns

This contextual representation of “terribly”
has both left and right context!

Concatenated
hidden states

h =fh_,,x)eR"

........]\

g

]/g........]
Yj........}
}/i"-""']

RN
[ﬁ(ht—laxt)atz 1,2,...71

ﬁ
t fZ(ht+19Xt)at:n,n— 1,1

Backward RNN

_)
h
&
h

;

\\{0000
\\itooc

{0000
—xD

Forward RNN

o000
XX}

Sl
~
.\

:

h,=[h,h,]ecRY

~—e000

the movie

2

as terribly exciting !

When can we use bidirectional RNNs? m

Can we use bidirectional RNNSs in the following tasks?
(1) text classification, (2) sequence tagging, (3) text generation

(a) Yes, Yes, Yes
(b) Yes, No, Yes
(c) Yes, Yes, No
(d) No, Yes, No

The answer is (c).

Bidirectional RN Ns

e Seqguence tagging: Yes! (esp. important)

Bidirectional RN Ns

e Sequence tagging: Yes!

o Text classification: Yes!

e Common practice: concatenate the last hidden vectors in two directions or take the
mean/max over all the hidden vectors

!
EEEE)

O
Sentence encoding 8
O

|

e movie was terribly exciting

the movie was terribly exciting ! T T
h

e Text generation: No. Because we can’t see the future to predict the next word.

A note on terminology

e Simple RNNs are also called vanilla RNNs

e Sometimes vanilla RNNs don’t work that well, so we need to use some advanced

RNN variants such as LSTM or GRUs

,ff (next lecture)

... together with fancy ingredients such as residual
connections with self-attention, variational dropout..

