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Recap: Hidden Markov models

1. Set of states S = {1, 2, ..., K} and set of observations 


2. Initial state probability distribution 


3. Transition probabilities 


4. Emission probabilities 

O = {o1, …, on}

π(s1)

P(st+1 |st)

P(ot |st)

s1 s2 s3 s4

the cat sat onWords

Tags

Strong assumptions



1. Markov assumption: 


                    


2. Output independence: 


                        

P(st+1 |s1, . . . , st) ≈ P(st+1 |st)

P(ot |s1, . . . , st) ≈ P(ot |st)

Recap: Hidden Markov models

 
1) assumes (s)tate sequences do 
not have very strong priors/long-
range dependencies 

2) assumes neighboring (s)tates 
don’t affect current (o)bservation

s1 s2 s3 s4

the cat sat onWords

Tags



Recap:  Viterbi decoding

DT

NN

VBD

IN

The cat sat on
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NN

VBD
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M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pick max
k

M[n, k] and backtrack using BBackward:

 stores joint probability of 
most probable sequence of 
states ending with state j at time i

M[i, j]



Trigram hidden Markov models
What we have seen so far is also called bigram HMM

Can add smoothing techniques to 
avoid zero probabilities!

Time complexity: O(nK3)

P(si |si−1, si−2) =
Count(si, si−1, si−2)
Count(si−1, si−2)

MLE estimate:

P(S, O) =
n

∏
i=1

P(si ∣ si−1, si−2)P(oi ∣ si)

Can be extended to trigram, 4-gram etc.

M[i, j, k] = max
r

M[i − 1,k, r] P(sj |sk, sr) P(oi |sj) 1 ≤ j, k, r ≤ K 1 ≤ i ≤ nViterbi:

most probable sequence of states ending 
with state j at time i, and state k at i-1



Maximum Entropy Markov Models (MEMMs)

ICML 2000



Generative vs discriminative models

• HMM is a generative model


• Can we model  directly?P(s1, . . . , sn |o1, . . . , on)

Generative Discriminative

Naive Bayes: 
P(c)P(d |c)

Logistic Regression: 
P(c |d)

Text 

classification

HMM: 
P(s1, . . . , sn)P(o1, . . . , on |s1, . . . , sn)

MEMM: 
P(s1, . . . , sn |o1, . . . , on)

Sequence 
prediction



Maximum entropy Markov model (MEMM)

O = ⟨o1, o2, . . . , on⟩P(S ∣ O) =
n

∏
i=1

P(si ∣ si−1, si−2, …, s1, O)

=
n

∏
i=1

P(si ∣ si−1, O)

P(si = s ∣ si−1, O) ∝ exp(w ⋅ f(si = s, si−1, O, i))
featuresweights

Markov assumption:
Bigram MEMM

DT NN VB IN

The cat sat on

HMM

DT NN VB IN

The cat sat on

MEMM

Important: you can define 
features over entire word 
sequence !O



Use features and weights: 



• Which of the following is the correct way to calculate this probability? 

A)  

B)  

C) 

P(si = s |si−1, O) ∝ exp(w ⋅ f(si = s, si−1, O, i))

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s, si−1 = s′￼, O, i))

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, O, i))

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑O′￼
exp(w ⋅ f(si = s, si−1, O′￼, i))

The answer is (B)



DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

O = ⟨o1, o2, . . . , on⟩

Maximum entropy Markov model (MEMM)

P(si = s ∣ si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, O, i))

• Can be easily extended to trigram MEMM, 4-gram MEMM..

P(si = s ∣ si−1, si−2, O) =
exp(w ⋅ f(si = s, si−1, si−2, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, si−2, O, i))

• Bigram MEMM:



How to define features?

Feature templates

Features (binary)

 = tags (states)

 = words (observations)

ti
wi

f(si = s′￼, si−1, si−2, O, i)



Features in an MEMM

DT    NN     VB      DT     NN

The   old    man    the    boat

Which of these feature templates 
would help most to tag ‘old’ correctly? 
A)  
B)   
C)  
D) 

⟨ti, ti−1, wi, wi−1, wi+1⟩
⟨ti, ti−1, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

DT    JJ     NN     DT     NN

Correct

Incorrect

 = tags (states)

 = words (observations)

ti
wi

wiwi−1 wi+1 wi+2 wi+3

The answer is (D)



MEMMs: Decoding

     ̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |si−1, O)

• Bigram MEMM:

• Greedy decoding:

DT ? ? ?

The cat sat on

Decoded tag

̂s1 = arg max
s

P(si = s ∣ ∅, O) = arg max
s

w ⋅ f(si = s, si−1 = ∅, O) = DT



MEMMs: Decoding

     ̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |si−1, O)

• Bigram MEMM:

• Greedy decoding:

DT NN ? ?

The cat sat on

Decoded tag

̂s2 = arg max
s

P(si = s ∣ DT, O) = NN



MEMMs: Decoding

     ̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |si−1, O)

• Bigram MEMM:

• Greedy decoding:

DT NN VBD IN

The cat sat on

Decoded tag

̂si = arg max
s

P(si = s ∣ ̂si−1, O)



Viterbi decoding for MEMMs

Pick max
k

M[n, k] and backtrack using BBackward:

 stores joint probability of 
most probable sequence of 
states ending with state j at time i

M[i, j]

M[i, j] = max
k

M[i − 1,k] P(si = j |si−1 = k, O) 1 ≤ k ≤ K 1 ≤ i ≤ n



MEMM: Decoding

How would you compare the computational complexity of Viterbi 

decoding for bigram MEMMs compared to decoding for bigram 
HMMs? 
A) More operations in MEMM

B) More operations in HMM

C) Equal

D) Depends on number of features in MEMM

M[i, j] = max
k

M[i − 1,k] P(si = j |si−1 = k, O) 1 ≤ k ≤ K 1 ≤ i ≤ n

M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

MEMM:

HMM:

The answer is (D)



MEMM: Learning

• Gradient descent: similar to logistic regression!

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑s′￼
exp(w ⋅ f(si = s′￼, si−1, O, i))

• Compute gradients with respect to weights  and updatew

• Given: annotated pairs of 


Loss for one sequence, 

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = −
n

∑
i=1

log P(si |si−1, O)



MEMM vs HMM

• HMM models the joint  while MEMM models the required prediction 


• MEMM has more expressivity 


• accounts for dependencies between neighboring states and entire observation 
sequence


• allows for more flexible features 

• HMM may hold an advantage if the dataset is small

P(S, O) P(S |O)



Conditional Random Fields (CRFs)

ICML 2001



Conditional Random Field

• Normalize over entire sequences

• Model  directly P(s1, . . . , sn |o1, . . . , on)

• No Markov assumption


• Map entire sequence of states S and 
observations O to a global feature vector

DT NN VB IN

The cat sat on

 
P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

=
exp(w ⋅ f(S, O))

Z(O)



Features

• Each  in  is a global feature function


 

Fk f

P(S |O) =
exp(∑m

k=1 wk ⋅ Fk(S, O))

∑S′￼
exp(∑m

k=1 wk ⋅ Fk(S′￼, O))

P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

DT NN VB IN

The cat sat on

• Can be computed as a combination of local 

features:    


• Each local feature only depends on previous 
and current states

Fk =
n

∑
i=1

fk(si−1, si, O, i)



CRF: Decoding

• 


                                       


                                         


• Use Viterbi similar to HMM and MEMM

̂S = arg max
S

P(S |O) = arg max
S

exp(w ⋅ f(S, O))
Z(O)

= arg max
S

exp(w ⋅ f(S, O))

= arg max
S

m

∑
k=1

n

∑
i=1

wk fk(si−1, si, O, i)



CRF: Learning

P(S |O) =
exp(∑m

k=1 ∑n
i=1 wk fk(si−1, si, O, i))

Z(O)

=
exp(∑m

k=1 ∑n
i=1 wk fk(si−1, si, O, i))

∑s′￼1,…,s′￼n
exp(∑m

k=1 ∑n
i=1 wk fk(s′￼i−1, s′￼i, O, i))

−log P(S ∣ O) = −
m

∑
k=1

n

∑
i=1

wk fk(si−1, si, O, i)) + log ∑
s′￼1,…,s′￼n

exp(
m

∑
k=1

n

∑
i=1

wk fk(s′￼i−1, s′￼i, O, i))

−∂ log P(S ∣ O)
∂wk

can be done efficiently using dynamic programming



CRF vs MEMM

• MEMM models the required prediction  using the Markov 
assumption, while the CRF does not


• CRF uses global features while MEMM features are localized


• Feature design is flexible in both models


• CRF is computationally more complex

P(S |O)



History of CRFs

• Very popular in the 2000s


• Wide variety of applications:


• Information extraction


• Summarization


• Image labeling/segmentation



History of CRFs

• Very popular in the 2000s


• Wide variety of applications:


• Information extraction


• Summarization


• Image labeling/segmentation



CRFs in deep learning era

• Use CRFs on top of neural 
representations (instead of features 
and weights)


• Joint sequence prediction without 
the need for defining features!


• Recent architectures such as 
seq2seq w/ attention or Transformer 
may implicitly do the job



Named entity recognition (NER)



Named entity recognition



Named entities

• Named entity, in its core usage, means anything that can be referred to with a 
proper name. 


• NER is the task of 1) finding spans of text that constitute proper names; 2) 
tagging the type of the entity


• Most common 4 tags: 


• PER (Person): “Marie Curie” 


• LOC (Location): “New York City” 


• ORG (Organization): “Princeton University”


• MISC (Miscellaneous): nationality, events, ..



Only France and Britain backed Fischler ’s proposal  .

O LOC O LOC O PER O O O

Steve Jobs founded Apple with Steve Wozniak .
PER PER O ORG O PER PER .

O = not an entity
If multiple words constitute a named entity, they will be labeled with the same tag.



NER: BIO Tagging

B: token that begins a span
I: tokens that inside a span
O: tokens outside of a span


