
L7: Sequence Models - 2

COS 484

Natural Language Processing

Spring 2024

Recap: Hidden Markov models

1. Set of states S = {1, 2, ..., K} and set of observations

2. Initial state probability distribution

3. Transition probabilities

4. Emission probabilities

O = {o1, …, on}

π(s1)

P(st+1 |st)

P(ot |st)

s1 s2 s3 s4

the cat sat onWords

Tags

Strong assumptions

1. Markov assumption:

2. Output independence:

P(st+1 |s1, . . . , st) ≈ P(st+1 |st)

P(ot |s1, . . . , st) ≈ P(ot |st)

Recap: Hidden Markov models

 
1) assumes (s)tate sequences do
not have very strong priors/long-
range dependencies 

2) assumes neighboring (s)tates
don’t affect current (o)bservation

s1 s2 s3 s4

the cat sat onWords

Tags

Recap: Viterbi decoding

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pick max
k

M[n, k] and backtrack using BBackward:

 stores joint probability of
most probable sequence of
states ending with state j at time i

M[i, j]

Trigram hidden Markov models
What we have seen so far is also called bigram HMM

Can add smoothing techniques to
avoid zero probabilities!

Time complexity: O(nK3)

P(si |si−1, si−2) =
Count(si, si−1, si−2)
Count(si−1, si−2)

MLE estimate:

P(S, O) =
n

∏
i=1

P(si ∣ si−1, si−2)P(oi ∣ si)

Can be extended to trigram, 4-gram etc.

M[i, j, k] = max
r

M[i − 1,k, r] P(sj |sk, sr) P(oi |sj) 1 ≤ j, k, r ≤ K 1 ≤ i ≤ nViterbi:

most probable sequence of states ending
with state j at time i, and state k at i-1

Maximum Entropy Markov Models (MEMMs)

ICML 2000

Generative vs discriminative models

• HMM is a generative model

• Can we model directly?P(s1, . . . , sn |o1, . . . , on)

Generative Discriminative

Naive Bayes:
P(c)P(d |c)

Logistic Regression:
P(c |d)

Text

classification

HMM:
P(s1, . . . , sn)P(o1, . . . , on |s1, . . . , sn)

MEMM:
P(s1, . . . , sn |o1, . . . , on)

Sequence
prediction

Maximum entropy Markov model (MEMM)

O = ⟨o1, o2, . . . , on⟩P(S ∣ O) =
n

∏
i=1

P(si ∣ si−1, si−2, …, s1, O)

=
n

∏
i=1

P(si ∣ si−1, O)

P(si = s ∣ si−1, O) ∝ exp(w ⋅ f(si = s, si−1, O, i))
featuresweights

Markov assumption:
Bigram MEMM

DT NN VB IN

The cat sat on

HMM

DT NN VB IN

The cat sat on

MEMM

Important: you can define
features over entire word
sequence !O

Use features and weights:

• Which of the following is the correct way to calculate this probability? 

A)  

B)  

C)

P(si = s |si−1, O) ∝ exp(w ⋅ f(si = s, si−1, O, i))

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s, si−1 = s′￼, O, i))

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, O, i))

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑O′￼
exp(w ⋅ f(si = s, si−1, O′￼, i))

The answer is (B)

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

O = ⟨o1, o2, . . . , on⟩

Maximum entropy Markov model (MEMM)

P(si = s ∣ si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, O, i))

• Can be easily extended to trigram MEMM, 4-gram MEMM..

P(si = s ∣ si−1, si−2, O) =
exp(w ⋅ f(si = s, si−1, si−2, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, si−2, O, i))

• Bigram MEMM:

How to define features?

Feature templates

Features (binary)

 = tags (states)

 = words (observations)

ti
wi

f(si = s′￼, si−1, si−2, O, i)

Features in an MEMM

DT NN VB DT NN

The old man the boat

Which of these feature templates
would help most to tag ‘old’ correctly?
A)
B)
C)
D)

⟨ti, ti−1, wi, wi−1, wi+1⟩
⟨ti, ti−1, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

DT JJ NN DT NN

Correct

Incorrect

 = tags (states)

 = words (observations)

ti
wi

wiwi−1 wi+1 wi+2 wi+3

The answer is (D)

MEMMs: Decoding

 ̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |si−1, O)

• Bigram MEMM:

• Greedy decoding:

DT ? ? ?

The cat sat on

Decoded tag

̂s1 = arg max
s

P(si = s ∣ ∅, O) = arg max
s

w ⋅ f(si = s, si−1 = ∅, O) = DT

MEMMs: Decoding

 ̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |si−1, O)

• Bigram MEMM:

• Greedy decoding:

DT NN ? ?

The cat sat on

Decoded tag

̂s2 = arg max
s

P(si = s ∣ DT, O) = NN

MEMMs: Decoding

 ̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |si−1, O)

• Bigram MEMM:

• Greedy decoding:

DT NN VBD IN

The cat sat on

Decoded tag

̂si = arg max
s

P(si = s ∣ ̂si−1, O)

Viterbi decoding for MEMMs

Pick max
k

M[n, k] and backtrack using BBackward:

 stores joint probability of
most probable sequence of
states ending with state j at time i

M[i, j]

M[i, j] = max
k

M[i − 1,k] P(si = j |si−1 = k, O) 1 ≤ k ≤ K 1 ≤ i ≤ n

MEMM: Decoding

How would you compare the computational complexity of Viterbi

decoding for bigram MEMMs compared to decoding for bigram
HMMs? 
A) More operations in MEMM

B) More operations in HMM

C) Equal

D) Depends on number of features in MEMM

M[i, j] = max
k

M[i − 1,k] P(si = j |si−1 = k, O) 1 ≤ k ≤ K 1 ≤ i ≤ n

M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

MEMM:

HMM:

The answer is (D)

MEMM: Learning

• Gradient descent: similar to logistic regression!

P(si = s |si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑s′￼
exp(w ⋅ f(si = s′￼, si−1, O, i))

• Compute gradients with respect to weights and updatew

• Given: annotated pairs of

Loss for one sequence,

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = −
n

∑
i=1

log P(si |si−1, O)

MEMM vs HMM

• HMM models the joint while MEMM models the required prediction

• MEMM has more expressivity

• accounts for dependencies between neighboring states and entire observation
sequence

• allows for more flexible features

• HMM may hold an advantage if the dataset is small

P(S, O) P(S |O)

Conditional Random Fields (CRFs)

ICML 2001

Conditional Random Field

• Normalize over entire sequences

• Model directly P(s1, . . . , sn |o1, . . . , on)

• No Markov assumption

• Map entire sequence of states S and
observations O to a global feature vector

DT NN VB IN

The cat sat on

P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

=
exp(w ⋅ f(S, O))

Z(O)

Features

• Each in is a global feature function

Fk f

P(S |O) =
exp(∑m

k=1 wk ⋅ Fk(S, O))

∑S′￼
exp(∑m

k=1 wk ⋅ Fk(S′￼, O))

P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

DT NN VB IN

The cat sat on

• Can be computed as a combination of local

features:

• Each local feature only depends on previous
and current states

Fk =
n

∑
i=1

fk(si−1, si, O, i)

CRF: Decoding

•

• Use Viterbi similar to HMM and MEMM

̂S = arg max
S

P(S |O) = arg max
S

exp(w ⋅ f(S, O))
Z(O)

= arg max
S

exp(w ⋅ f(S, O))

= arg max
S

m

∑
k=1

n

∑
i=1

wk fk(si−1, si, O, i)

CRF: Learning

P(S |O) =
exp(∑m

k=1 ∑n
i=1 wk fk(si−1, si, O, i))

Z(O)

=
exp(∑m

k=1 ∑n
i=1 wk fk(si−1, si, O, i))

∑s′￼1,…,s′￼n
exp(∑m

k=1 ∑n
i=1 wk fk(s′￼i−1, s′￼i, O, i))

−log P(S ∣ O) = −
m

∑
k=1

n

∑
i=1

wk fk(si−1, si, O, i)) + log ∑
s′￼1,…,s′￼n

exp(
m

∑
k=1

n

∑
i=1

wk fk(s′￼i−1, s′￼i, O, i))

−∂ log P(S ∣ O)
∂wk

can be done efficiently using dynamic programming

CRF vs MEMM

• MEMM models the required prediction using the Markov
assumption, while the CRF does not

• CRF uses global features while MEMM features are localized

• Feature design is flexible in both models

• CRF is computationally more complex

P(S |O)

History of CRFs

• Very popular in the 2000s

• Wide variety of applications:

• Information extraction

• Summarization

• Image labeling/segmentation

History of CRFs

• Very popular in the 2000s

• Wide variety of applications:

• Information extraction

• Summarization

• Image labeling/segmentation

CRFs in deep learning era

• Use CRFs on top of neural
representations (instead of features
and weights)

• Joint sequence prediction without
the need for defining features!

• Recent architectures such as
seq2seq w/ attention or Transformer
may implicitly do the job

Named entity recognition (NER)

Named entity recognition

Named entities

• Named entity, in its core usage, means anything that can be referred to with a
proper name.

• NER is the task of 1) finding spans of text that constitute proper names; 2)
tagging the type of the entity

• Most common 4 tags:

• PER (Person): “Marie Curie”

• LOC (Location): “New York City”

• ORG (Organization): “Princeton University”

• MISC (Miscellaneous): nationality, events, ..

Only France and Britain backed Fischler ’s proposal .

O LOC O LOC O PER O O O

Steve Jobs founded Apple with Steve Wozniak .
PER PER O ORG O PER PER .

O = not an entity
If multiple words constitute a named entity, they will be labeled with the same tag.

NER: BIO Tagging

B: token that begins a span
I: tokens that inside a span
O: tokens outside of a span

