Recap: Hidden Markov models

1. Set of states $S = \{1, 2, ..., K\}$ and set of observations $O = \{o_1, ..., o_n\}$

2. Initial state probability distribution $\pi(s_1)$

3. Transition probabilities $P(s_{t+1} | s_{t})$

4. Emission probabilities $P(o_t | s_t)$

Strong assumptions
Recap: Hidden Markov models

1. **Markov assumption:**

\[P(s_{t+1} \mid s_1, \ldots, s_t) \approx P(s_{t+1} \mid s_t) \]

1) assumes (s)tate sequences do not have very strong priors/long-range dependencies

2. **Output independence:**

\[P(o_t \mid s_1, \ldots, s_t) \approx P(o_t \mid s_t) \]

2) assumes neighboring (s)tates don’t affect current (o)bservation
Recap: Viterbi decoding

\[M[i, j] = \max_k M[i - 1, k] P(s_j | s_k) P(o_i | s_j) \quad 1 \leq k \leq K \quad 1 \leq i \leq n \]

Backward: Pick \(\max_k M[n, k] \) and backtrack using \(B \)
Trigram hidden Markov models

What we have seen so far is also called bigram HMM
Can be extended to trigram, 4-gram etc.

$$P(S, O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, s_{i-2})P(o_i \mid s_i)$$

MLE estimate: $$P(s_i \mid s_{i-1}, s_{i-2}) = \frac{\text{Count}(s_i, s_{i-1}, s_{i-2})}{\text{Count}(s_{i-1}, s_{i-2})}$$

Can add smoothing techniques to avoid zero probabilities!

Viterbi: $$M[i, j, k] = \max_r M[i - 1, k, r] \ P(s_j \mid s_k, s_r) \ P(o_i \mid s_j) \quad 1 \leq j, k, r \leq K \quad 1 \leq i \leq n$$

most probable sequence of states ending
with state j at time i, and state k at $i-1$

Time complexity: $O(nK^3)$
Maximum Entropy Markov Models (MEMMs)

ICML 2000

Maximum Entropy Markov Models for Information Extraction and Segmentation

Andrew McCallum
Dayne Freitag
Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Fernando Pereira
AT&T Labs - Research, 180 Park Ave, Florham Park, NJ 07932 USA

MCCALLUM@JUSTRESEARCH.COM
DAYNE@JUSTRESEARCH.COM

PEREIRA@RESEARCH.ATT.COM
Generative vs discriminative models

- HMM is a *generative* model
- Can we model $P(s_1, \ldots, s_n \mid o_1, \ldots, o_n)$ directly?

<table>
<thead>
<tr>
<th>Generative</th>
<th>Discriminative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Bayes: $P(c)P(d \mid c)$</td>
<td>Logistic Regression: $P(c \mid d)$</td>
</tr>
<tr>
<td>HMM: $P(s_1, \ldots, s_n)P(o_1, \ldots, o_n \mid s_1, \ldots, s_n)$</td>
<td>MEMM: $P(s_1, \ldots, s_n \mid o_1, \ldots, o_n)$</td>
</tr>
</tbody>
</table>
Maximum entropy Markov model (MEMM)

\[O = \langle o_1, o_2, \ldots, o_n \rangle \]

Markov assumption:
Bigram MEMM

Important: you can define features over entire word sequence \(O \)!
Use features and weights:

\[P(s_i = s \mid s_{i-1}, O) \propto \exp(w \cdot f(s_i = s, s_{i-1}, O, i)) \]

- Which of the following is the correct way to calculate this probability?

A) \[P(s_i = s \mid s_{i-1}, O) = \frac{\exp(w \cdot f(s_i = s, s_{i-1}, O, i))}{\sum_{s' = 1}^{K} \exp(w \cdot f(s_i = s, s_{i-1} = s', O, i))} \]

B) \[P(s_i = s \mid s_{i-1}, O) = \frac{\exp(w \cdot f(s_i = s, s_{i-1}, O, i))}{\sum_{s' = 1}^{K} \exp(w \cdot f(s_i = s', s_{i-1}, O, i))} \]

C) \[P(s_i = s \mid s_{i-1}, O) = \frac{\exp(w \cdot f(s_i = s, s_{i-1}, O, i))}{\sum_{O'} \exp(w \cdot f(s_i = s, s_{i-1}, O', i))} \]

The answer is (B)
Maximum entropy Markov model (MEMM)

- Bigram MEMM:

\[P(s_i = s \mid s_{i-1}, O) = \frac{\exp(w \cdot f(s_i = s, s_{i-1}, O, i))}{\sum_{s' = 1}^{K} \exp(w \cdot f(s_i = s', s_{i-1}, O, i))} \]

- Can be easily extended to trigram MEMM, 4-gram MEMM...

\[P(s_i = s \mid s_{i-1}, s_{i-2}, O) = \frac{\exp(w \cdot f(s_i = s, s_{i-1}, s_{i-2}, O, i))}{\sum_{s' = 1}^{K} \exp(w \cdot f(s_i = s', s_{i-1}, s_{i-2}, O, i))} \]
How to define features?

\[f(s_i = s', s_{i-1}, s_{i-2}, O, i) \]

- \(t_i = \) tags (states)
- \(w_i = \) words (observations)

- Feature templates:
 - \(\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle \)
 - \(\langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle, \)
 - \(\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle, \langle t_i, w_i, w_{i+1} \rangle \),

- Features (binary):
 - \(t_i = \text{VB} \) and \(w_{i-2} = \text{Janet} \)
 - \(t_i = \text{VB} \) and \(w_{i-1} = \text{will} \)
 - \(t_i = \text{VB} \) and \(w_i = \text{back} \)
 - \(t_i = \text{VB} \) and \(w_{i+1} = \text{the} \)
 - \(t_i = \text{VB} \) and \(w_{i+2} = \text{bill} \)
 - \(t_i = \text{VB} \) and \(t_{i-1} = \text{MD} \)
 - \(t_i = \text{VB} \) and \(t_{i-1} = \text{MD} \) and \(t_{i-2} = \text{NNP} \)
 - \(t_i = \text{VB} \) and \(w_i = \text{back} \) and \(w_{i+1} = \text{the} \)
Features in an MEMM

Incorrect DT JJ NN DT NN
Correct DT NN VB DT NN

The old man the boat

\[w_{i-1} \quad w_i \quad w_{i+1} \quad w_{i+2} \quad w_{i+3} \]

Which of these feature templates would help most to tag ‘old’ correctly?

A) \(\langle t_i, t_{i-1}, w_i, w_{i-1}, w_{i+1} \rangle \)
B) \(\langle t_i, t_{i-1}, w_i, w_{i-1} \rangle \)
C) \(\langle t_i, w_i, w_{i-1}, w_{i+1} \rangle \)
D) \(\langle t_i, w_i, w_{i-1}, w_{i+1}, w_{i+2} \rangle \)

\[t_i = \text{tags (states)} \]
\[w_i = \text{words (observations)} \]

The answer is (D)
MEMMs: Decoding

- Bigram MEMM:

\[
\hat{S} = \arg \max_S P(S \mid O) = \arg \max_S \prod_i P(s_i \mid s_{i-1}, O)
\]

- Greedy decoding:

\[
\hat{s}_1 = \arg \max_s P(s_1 = s \mid \emptyset, O) = \arg \max_s \mathbf{w} \cdot \mathbf{f}(s_1 = s, s_{i-1} = \emptyset, O) = \text{DT}
\]
MEMMs: Decoding

- Bigram MEMM:

\[\hat{S} = \arg \max_S P(S \mid O) = \arg \max_S \prod_i P(s_i \mid s_{i-1}, O) \]

- Greedy decoding:

\[\hat{s}_2 = \arg \max_s P(s_i = s \mid DT, O) = NN \]
MEMMs: Decoding

- Bigram MEMM:

\[\hat{S} = \arg \max_S P(S \mid O) = \arg \max_S \prod_i P(s_i \mid s_{i-1}, O) \]

- Greedy decoding:

\[\hat{s}_i = \arg \max_s P(s_i = s \mid \hat{s}_{i-1}, O) \]
Viterbi decoding for MEMMs

$M[i, j]$ stores joint probability of most probable sequence of states ending with state j at time i

$$M[i, j] = \max_k M[i-1, k] \ P(s_i = j | s_{i-1} = k, O) \quad 1 \leq k \leq K \quad 1 \leq i \leq n$$

Backward: Pick $\max_k M[n, k]$ and backtrack using B
How would you compare the computational complexity of Viterbi decoding for bigram MEMMs compared to decoding for bigram HMMs?
A) More operations in MEMM
B) More operations in HMM
C) Equal
D) Depends on number of features in MEMM

The answer is (D)
MEMM: Learning

- **Gradient descent:** similar to logistic regression!

\[
P(s_i = s | s_{i-1}, O) = \frac{\exp(w \cdot f(s_i = s, s_{i-1}, O, i))}{\sum_s \exp(w \cdot f(s_i = s', s_{i-1}, O, i))}
\]

- **Given:** annotated pairs of \((S, O)\) where each \(S = \langle s_1, s_2, \ldots, s_n \rangle\)

Loss for one sequence, \(L = - \sum_{i=1}^{n} \log P(s_i | s_{i-1}, O)\)

- Compute gradients with respect to weights \(w\) and update
MEMM vs HMM

- HMM models the joint $P(S, O)$ while MEMM models the required prediction $P(S \mid O)$
- MEMM has more expressivity
 - accounts for dependencies between neighboring states and entire observation sequence
 - allows for more flexible features
- HMM may hold an advantage if the dataset is small
Conditional Random Fields (CRFs)

ICML 2001

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty
Andrew McCallum
Fernando Pereira

*WhizBang! Labs–Research, 4616 Henry Street, Pittsburgh, PA 15213 USA
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA
‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

LAFFERTY@CS.CMU.EDU
MCCALLUM@WHIZBANG.COM
FPEREIRA@WHIZBANG.COM
Conditional Random Field

- Model $P(s_1, \ldots, s_n \mid o_1, \ldots, o_n)$ directly
- No Markov assumption
- Map entire sequence of states S and observations O to a **global** feature vector
- Normalize over entire sequences

$$P(S \mid O) = \frac{\exp(w \cdot f(S, O))}{\sum_{S'} \exp(w \cdot f(S', O))} = \frac{\exp(w \cdot f(S, O))}{Z(O)}$$
Features

- Each F_k in \mathbf{f} is a **global** feature function

$$P(S \mid O) = \frac{\exp(\sum_{k=1}^{m} w_k \cdot F_k(S, O))}{\sum_{S'} \exp(\sum_{k=1}^{m} w_k \cdot F_k(S', O))}$$

- Can be computed as a combination of local features:

$$F_k = \sum_{i=1}^{n} f_k(s_{i-1}, s_i, O, i)$$

- Each local feature only depends on previous and current states

\[
\begin{align*}
\{x_i = \text{the}, y_i = \text{DET}\} \quad &\quad \{y_i = \text{PROP}, x_{i+1} = \text{Street}, y_{i-1} = \text{NUM}\} \\
\{y_i = \text{VERB}, y_{i-1} = \text{AUX}\}
\end{align*}
\]
CRF: Decoding

\(\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \frac{\exp(w \cdot f(S, O))}{Z(O)} \)

\(= \arg \max_{S} \exp(w \cdot f(S, O)) \)

\(= \arg \max_{S} \sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i) \)

• Use Viterbi similar to HMM and MEMM
CRF: Learning

\[
P(S \mid O) = \frac{\exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i))}{Z(O)}
\]

\[
= \frac{\exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i))}{\sum_{s'_1, \ldots, s'_n} \exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s'_{i-1}, s'_i, O, i))}
\]

\[-\log P(S \mid O) = - \sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i)) + \log \sum_{s'_1, \ldots, s'_n} \exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s'_{i-1}, s'_i, O, i))
\]

\[-\frac{\partial \log P(S \mid O)}{\partial w_k} \text{ can be done efficiently using dynamic programming}
\]
CRF vs MEMM

• MEMM models the required prediction $P(S | O)$ using the Markov assumption, while the CRF does not

• CRF uses global features while MEMM features are localized

• Feature design is flexible in both models

• CRF is computationally more complex
History of CRFs

• Very popular in the 2000s

• Wide variety of applications:
 • Information extraction
 • Summarization
 • Image labeling/segmentation

Information extraction from research papers using conditional random fields

Fuchun Peng, Andrew McCallum

Multiscale conditional random fields for image labeling

Xuming He, R.S. Zemel, M.A. Carreira-Perpinan

Document Summarization using Conditional Random Fields

Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, Zheng Chen

1Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong
{dshen, qyang}@cse.ust.hk
2Microsoft Research Asia, 49 Zhichun Road, China
{jtsun, huli, zhengc}@microsoft.com
History of CRFs

• Very popular in the 2000s
• Wide variety of applications:
 • Information extraction
 • Summarization
 • Image labeling/segmentation

Software

This is a partial list of software that implement generic CRF tools.

• RNNSharp® CRFs based on recurrent neural networks (C#, .NET)
• CRF-ADF® Linear-chain CRFs with fast online ADF training (C#, .NET)
• CRFSsharp® Linear-chain CRFs (C#, .NET)
• GCO® CRFs with submodular energy functions (C++, Matlab)
• DGM® General CRFs (C++)
• GRMM® General CRFs (Java)
• factorie® General CRFs (Scala)
• CRFfast® General CRFs (Matlab)
• Sarawagi’s CRF® Linear-chain CRFs (Java)
• HCRF library® Hidden-state CRFs (C++, Matlab)
• Accord.NET® Linear-chain CRF, HCRF and HMMs (C#, .NET)
• Wapiti® Fast linear-chain CRFs (C)¹⁸
• CRFSuite® Fast restricted linear-chain CRFs (C)
• CRF++® Linear-chain CRFs (C++)
• FlexCRFs® First-order and second-order Markov CRFs (C++)
• crf-chain1® First-order, linear-chain CRFs (Haskell)
• imageCRF® CRF for segmenting images and image volumes (C++)
• MALLET® Linear-chain for sequence tagging (Java)
CRFs in deep learning era

- Use CRFs on top of neural representations (instead of features and weights)
- Joint sequence prediction without the need for defining features!
- Recent architectures such as seq2seq w/ attention or Transformer may implicitly do the job
Named entity recognition (NER)
Named entity recognition

Barack Hussein Obama II (born August 4, 1961) is an American attorney and politician who served as the 44th President of the United States from January 20, 2009, to January 20, 2017. A member of the Democratic Party, he was the first African American to serve as president. He was previously a United States Senator from Illinois and a member of the Illinois State Senate.
Named entities

- Named entity, in its core usage, means anything that can be referred to with a proper name.
- NER is the task of 1) finding spans of text that constitute proper names; 2) tagging the type of the entity
- Most common 4 tags:
 - **PER** (Person): “Marie Curie”
 - **LOC** (Location): “New York City”
 - **ORG** (Organization): “Princeton University”
 - **MISC** (Miscellaneous): nationality, events, ..
Only France and Britain backed Fischler’s proposal.

Steve Jobs founded Apple with Steve Wozniak.

O = not an entity
If multiple words constitute a named entity, they will be labeled with the same tag.
NER: BIO Tagging

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

<table>
<thead>
<tr>
<th>Words</th>
<th>BIO Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>B-PER</td>
</tr>
<tr>
<td>Villanueva</td>
<td>I-PER</td>
</tr>
<tr>
<td>of</td>
<td>O</td>
</tr>
<tr>
<td>United Airlines</td>
<td>B-ORG</td>
</tr>
<tr>
<td>Holding discussed</td>
<td>I-ORG</td>
</tr>
<tr>
<td>the</td>
<td>I-ORG</td>
</tr>
<tr>
<td>Chicago</td>
<td>O</td>
</tr>
<tr>
<td>route</td>
<td>O</td>
</tr>
</tbody>
</table>

B: token that begins a span
I: tokens that inside a span
O: tokens outside of a span