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Why model sequences?

Part-of-speech (POS) tagging

PRP: Personal pronoun 
VBZ: Verb, 3rd person 
singular present

NN: singular noun

NNS: plural noun

IN: preposition or 
subordinating 
conjunction

DT: determiner



Named Entity recognition

Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

Why model sequences?



Why model sequences?

Semantic role labeling

https://devopedia.org/semantic-role-labelling



NLP pipelines

https://spacy.io/usage/processing-pipelines https://stanfordnlp.github.io/CoreNLP/pipeline.html



What are part of speech tags?

• Word classes or syntactic categories


• Reveal useful information about a 
word (and its neighbors!)

3. The/DT old/NN man/VBP the/DT boat/NN

1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN

2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP



Parts of Speech

• Different words have different functions


• Can be roughly divided into two classes


• Closed class: fixed membership, function words


• e.g. prepositions (in, on, of), determiners (the, a)


• Open class: New words get added frequently


• e.g. nouns (Twitter, Facebook), verbs (google), 
adjectives, adverbs



Parts of Speech

How many part of speech tags do you think English has?


A) < 10


B) 10 - 20


C) 20 - 40


D) > 40

The answer is (D) - well, 
depends on definitions!



Penn treebank part-of-speech tagset

(Marcus et al., 1993)
45 tags

Other corpora: Brown, Switchboard

based on Wall Street 
Journal (WSJ)



Part of speech tagging

• Tag each word in a sentence with its part of speech


• Disambiguation task: each word might have different functions in different contexts


• The/DT man/NN bought/VBD a/DT boat/NN


• The/DT old/NN man/VBP the/DT boat/NN
Same word,  
different tags

Some words have 
many functions!

JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present
VB: Verb, base form, RP: particle, RB: adverb



Part of speech tagging

• Types = distinct words in the corpus
• Tokens = all words in the corpus (can be repeated)

Unambiguous types:  
Jane  NNP, 
hesitantly  RB 

→
→

• Tag each word in a sentence with its part of speech


• Disambiguation task: each word might have different senses/functions



A simple baseline

• Many words might be easy to tag


• Most frequent class: Assign each word to the class it occurred 
most in the training set. (e.g. man/NN)

How accurate do you think this baseline would 
be at tagging words? 

A) <50%

B) 50-75%

C) 75-90%

D) >90% The answer is (D)



A simple baseline

• Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!


• State of the art ~ 97%


• Average English sentence ~14 words


• Sentence level accuracies: 0.9214 = 31% vs 0.9714 = 65% 

• POS tagging not solved yet!

• Many words might be easy to tag


• Most frequent class: Assign each word to the class it occurred 
most in the training set. (e.g. man/NN)



Some observations

• The function (or POS) of a word depends on its context


• The/DT old/JJ man/NN bought/VBP the/DT boat/NN


• The/DT old/NN man/VBP the/DT boat/NN


• Certain POS combinations are extremely unlikely


• <JJ, DT>  (“good the”) or <DT, IN> (“the in”)


• Better to make decisions on entire sentences instead of individual words



Hidden Markov Models



Markov chains

• Model probabilities of sequences of variables


• Each state can take one of K values (can assume {1, 2, ..., K} for simplicity)


• Markov assumption: 


• A Markov chain is specified by 


• Initial probability distribution 


• Transition probability matrix ( )

P(st |s1, s2, …, st−1) ≈ P(st |st−1)

π(s), ∀s ∈ {1,…, K}

K × K

: initial distributionπ(s1)

: transition probabilityp(st ∣ st−1)

s1 s2 s3 s4

Where have we seen this before?  
N-gram language models!



Markov chains

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

s1 s2 s3 s4

Markov chains can help us model entire sentences.

s1 s2 s3 s4

The/?? cat/?? sat/?? on/?? the/?? mat/??

BUT we don’t normally see sequences of POS tags appearing in text



Hidden Markov Model (HMM)

• We don’t normally see sequences of POS tags in text 


• However, we do observe the words!


• The HMM allows us to jointly reason over both hidden and observed events.


• Assume that each position has a tag that generates a word

s1 s2 s3 s4

the cat sat on

Tags

Words

(hidden events)

(observed events)



Components of an HMM

1. Set of states S = {1, 2, ..., K} and set of observations 


2. Initial state probability distribution 


3. Transition probabilities 


4. Emission probabilities 

O = {o1, …, on}

π(s1)

P(st+1 |st)

P(ot |st)

s1 s2 s3 s4

the cat sat onWords

Tags

oi ∈ V



Assumptions

1. Markov assumption: 


                    


2. Output independence: 


                        

P(st |s1, . . . , st−1) ≈ P(st |st−1)

P(ot |s1, . . . , st) ≈ P(ot |st)

s1 s2 s3 s4

the cat sat onWords

Tags



If we add a dummy state  at the beginning, s0 = ∅

P(S, O) =
n

∏
i=1

P(si ∣ si−1)P(oi ∣ si) [ ]π(s1) = P(s1 ∣ ∅)

Sequence likelihood

s1 s2 s3 s4

the cat sat onWords

Tags

P(S, O) = P(s1, s2, …, sn, o1, o2, …, on)

= π(s1)p(o1 ∣ s1)
n

∏
i=2

P(si ∣ si−1)P(oi ∣ si)
transition 
probability

emission 
probability



Example: Sequence likelihood

DT NN

0.8 0.2

DT 0.2 0.8

NN 0.3 0.7

the cat

DT 0.9 0.1

NN 0.5 0.5

∅

What is the joint probability 
? 

A)  
B)  
C)  
D)  

P(the cat, DT NN)

(0.8 * 0.8) * (0.9 * 0.5)
(0.2 * 0.8) * (0.9 * 0.5)
(0.3 * 0.7) * (0.5 * 0.5)
(0.8 * 0.2) * (0.5 * 0.1)

Dummy start state
st+1

st

ot

s1 s2 s3 s4

the cat sat onWords

Tags

st

The answer is (A).



Learning

Maximum likelihood estimates:



P(si |sj) =
Count(sj, si)
Count(sj)

P(o |s) =
Count(s, o)
Count(s)

A: transition probabilities - (K + 1)  K×

Q: How many probabilities to estimate?

emission probabilities - |V | × K



Learning example

3. The/DT old/NN man/VBP the/DT boat/NN

1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN

2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP

Maximum likelihood estimates:



P(si |sj) =
Count(sj, si)
Count(sj)

P(o |s) =
Count(s, o)
Count(s)

P(NN |DT) = P(DT | IN) =

π(DT) = P(DT ∣ ∅) =

P(cat |NN) = P(the |DT) =

2/3

4/4 1/2

1/4 2/4
 (assuming we 

differentiate cased 
vs uncased words)



Decoding with HMMs

Task: Find the most probable sequence of states  given the 
observations 

S = s1, s2, . . . , sn
O = o1, o2, . . . , on

s1 s2 s3 s4

the cat sat onWords

Tags

 =  ̂S arg max
S

P(S ∣ O) = arg max
S

P(O ∣ S)P(S)
P(O)

[Bayes’ Rule]

 = arg max
S

P(O ∣ S)P(S)

 = arg max
s1,…,sn

n

∏
i=1

P(si ∣ si−1)P(oi ∣ si)
How can we maximize this? 

Search over all state sequences?



Greedy search

• Decode one state at at time

DT ? ? ?

The cat sat on

Decoded tag

arg max
s

π(s1 = s)p(The ∣ s) = DT



Greedy search

• Decode one state at at time

DT NN ? ?

The cat sat on

Decoded tag

arg max
s

p(s ∣ DT)p(cat ∣ s) = NN



Greedy search

• Decode one state at at time

DT NN VBD IN

The cat sat on

Decoded tag

̂st = arg max
s

p(s ∣ ̂st−1)p(ot ∣ s)

Very efficient but it doesn’t guarantee to produce the overall optimal sequence



Viterbi decoding

• Use dynamic programming!


• Maintain some extra data structures


• Probability lattice,  and backtracking matrix, 


• 


• 


•  stores joint probability of most probable sequence of states ending with state 
j at time i, 


•  is the tag at time i-1 in the most probable sequence ending with tag j at time i

M[T, K] B[T, K]

T : Number of time steps

K : Number of states

M[i, j]

B[i, j]



Viterbi decoding

DT

NN

VBD

IN

the

M[1,DT] = π(DT) P(the |DT)

M[1,NN] = π(NN) P(the |NN)

M[1,VBD] = π(VBD) P(the |VBD)

M[1,IN] = π(IN) P(the | IN)

Forward

4 possible POS tags Initialize the table



Viterbi decoding

DT

NN

VBD

IN

catthe

DT

NN

VBD

IN

M[2,DT] = max
k

M[1,k] P(DT |k) P(cat |DT )

M[2,NN] = max
k

M[1,k] P(NN |k) P(cat |NN)

M[2,VBD] = max
k

M[1,k] P(VBD |k) P(cat |VBD)

M[2,IN] = max
k

M[1,k] P(IN |k) P(cat | IN)

Forward

Consider all possible 
previous tags



Viterbi decoding
DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

What is the time complexity 
of this algorithm? 

A)  
B)  
C)  
D)

O(n)
O(nK)
O(nK2)
O(n2K)

n = number of timesteps 
K = number of states

The answer is (C).



Viterbi decoding

• In practice, we maximize sum of log 
probabilities (or minimize the sum of negative 
log probabilities) instead of maximize the 
product of probabilities

Pick max
k

M[n, k] and backtrack using BBackward:

M[2,NN] = max
k

{M[1,k] P(NN |k) P(cat |NN)}

M[2,NN] = max
k

{M[1,k] + log P(NN |k) + log P(cat |NN)}



Beam search

If K (number of possible hidden states) is too large, Viterbi is too expensive!

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN



Beam search

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

Observation: Many paths have very low likelihood!

0.0001 0.0001 0.0001

0.001

0.3 0.1

0.00001 0.01 0.01

• If K (number of possible hidden states) is too large, Viterbi is too expensive!



Beam search
• Keep a fixed number of hypotheses at each point

DT

NN

VBD

IN

The

β = 2

score = − 0.1

score = − 9.8

score = − 0.7

score = − 10.1

log probabilities 

• Beam width, β



Beam search

The cat

DT

NN

VBD

IN

Step 1: Expand all partial sequences in current beam

DT

NN

VBD

IN

β = 2

score = − 16.5
score = − 6.5

score = − 3.0
score = − 22.1

Accumulated scoresscore = − 0.5
score = − 13.5

score = − 32.0
score = − 20.3

• Keep a fixed number of hypotheses at each point
• Beam width, β



Beam search

The cat

DT

NN

VBD

IN

DT

NN

VBD

IN

β = 2

Step 2: Prune set back to top  sequences  (sort and select)β

Accumulated scores

… and Repeat!

score = − 16.5
score = − 6.5

score = − 3.0
score = − 22.1

score = − 0.5
score = − 13.5

score = − 32.0
score = − 20.3

• Keep a fixed number of hypotheses at each point
• Beam width, β



Beam search

The cat

DT

NN

VBD

IN

DT

NN

VBD

IN

β = 2

sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

Pick max
k

M[n, k] from within beam and backtrack

What is the time complexity 
of this algorithm?

n = number of timesteps 
K = number of states


 = beam widthβ

A: O(nKβ)

• Keep a fixed number of hypotheses at each point
• Beam width, β



Beam Search

• If K (number of states) is too large, Viterbi is too expensive!


• Keep a fixed number of hypotheses at each point


• Beam width, 


• Trade-off (some) accuracy for computational savings

β

• Final remark: beam search is a common decoding method for any language 
generation tasks (e.g., n-gram LMs, GPT-3)

Greedy: choose the most likely word!
To predict the next word given a context of two words :w1, w2

w3 = arg max
w∈V

P(w |w1, w2)


