

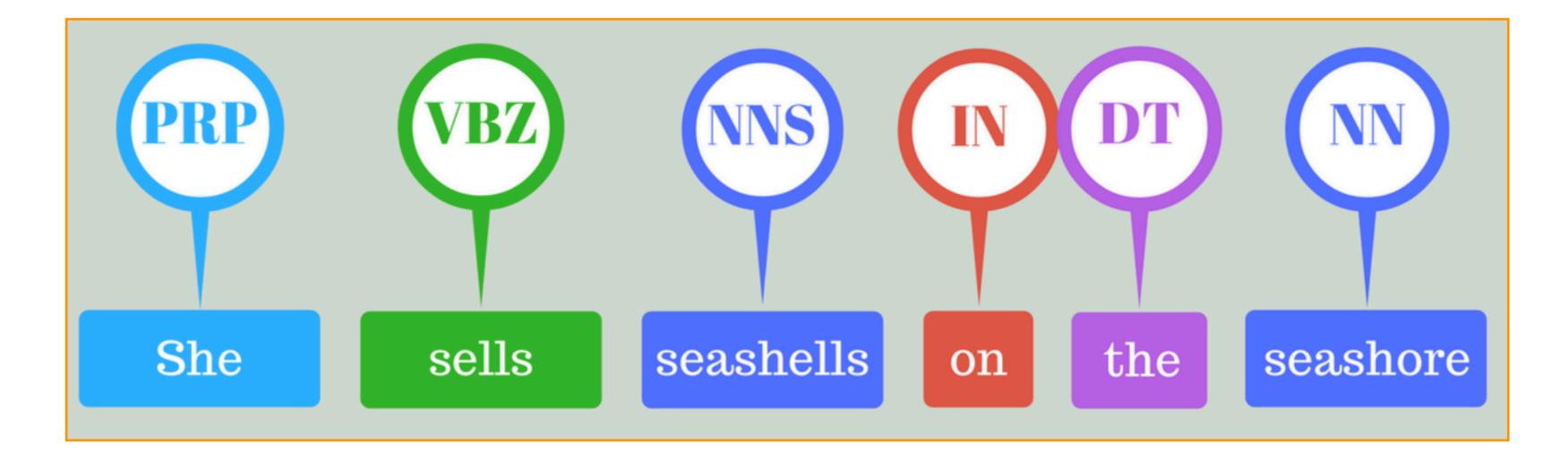
L6: Sequence Models

COS 484

Natural Language Processing

Spring 2024

Why model sequences?



Part-of-speech (POS) tagging

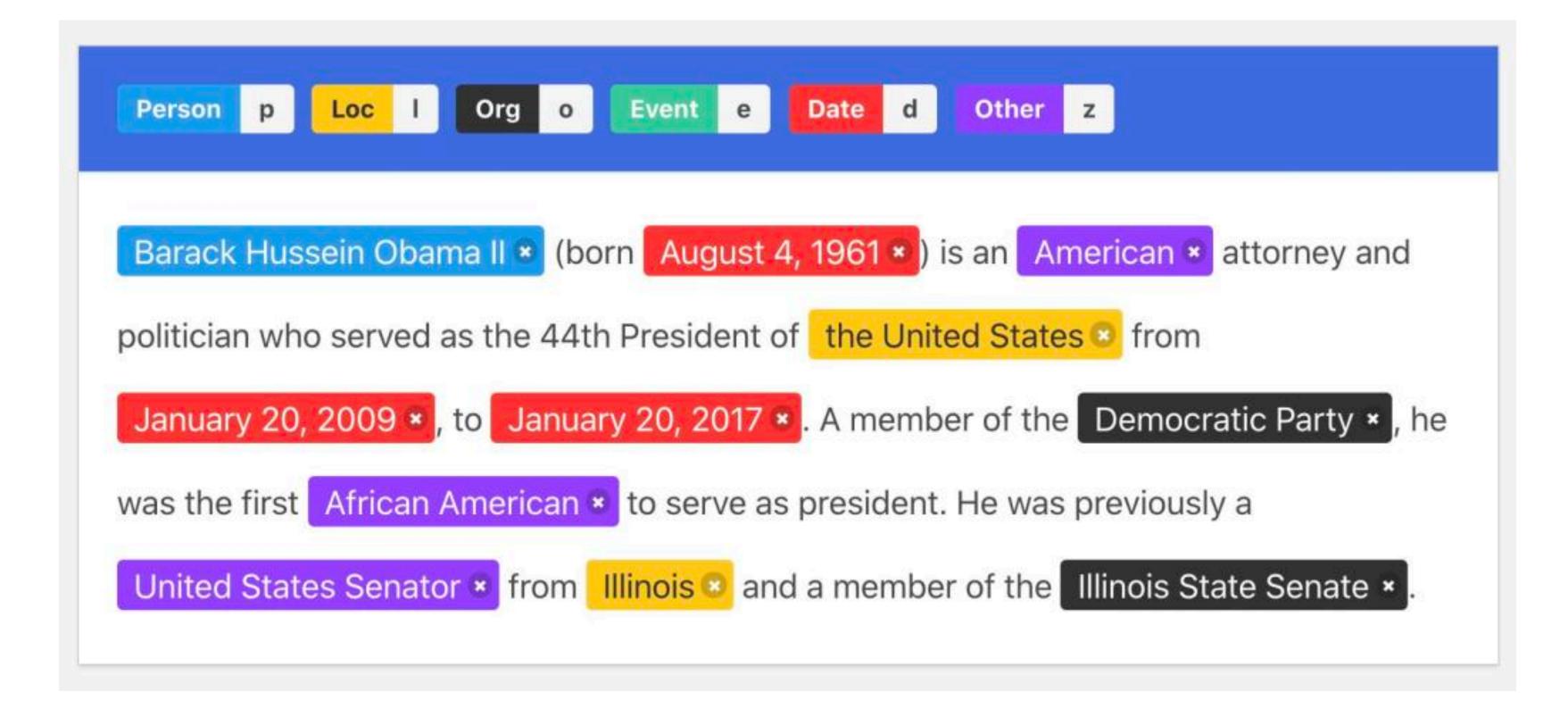
PRP: Personal pronoun

VBZ: Verb, 3rd person singular present

NN: singular noun NNS: plural noun

IN: preposition or subordinating conjunction DT: determiner

Why model sequences?



Named Entity recognition

Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

Why model sequences?

Mary loaded the truck with hay at the depot on Friday.

load.01 A0 loader A1 bearer A2 cargo A3 instrument

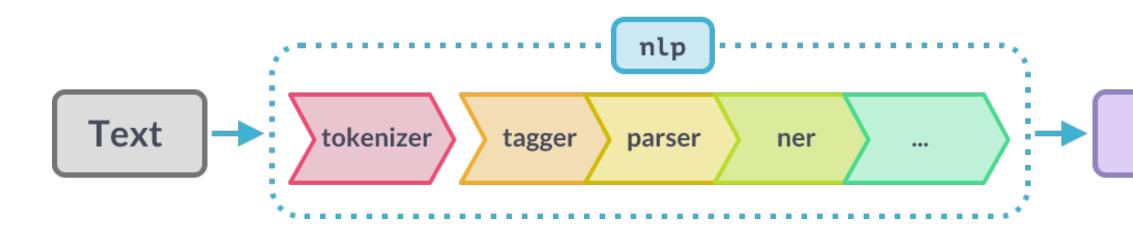
Semantic role labeling

https://devopedia.org/semantic-role-labelling

AM-LOC AM-TMP AM-PRP AM-MNR

. . .

Mary loaded hay onto the truck at the depot on Friday.



NAME	COMPONENT	CREATES	DESCRIPTION
tokenizer	Tokenizer ≣	Doc	Segment text into tokens.
tagger	Tagger ≣	Token.tag	Assign part-o speech tags.
parser	DependencyParser	Token.head, Token.dep, Doc.sents, Doc.noun_chunks	Assign dependency labels.
ner	EntityRecognizer	Doc.ents, Token.ent_iob, Token.ent_type	Detect and la named entitie

https://spacy.io/usage/processing-pipelines

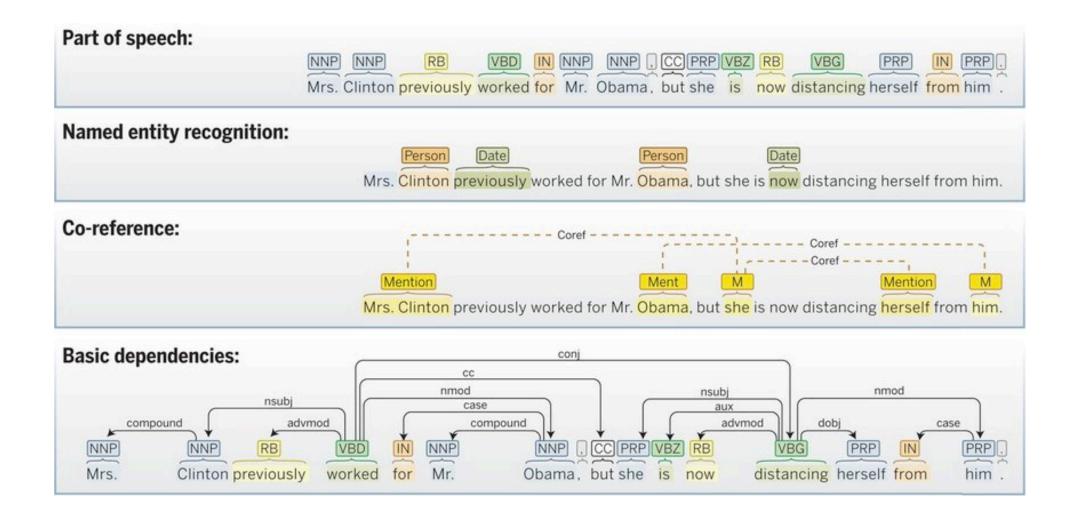
NLP pipelines

Doc

Ν

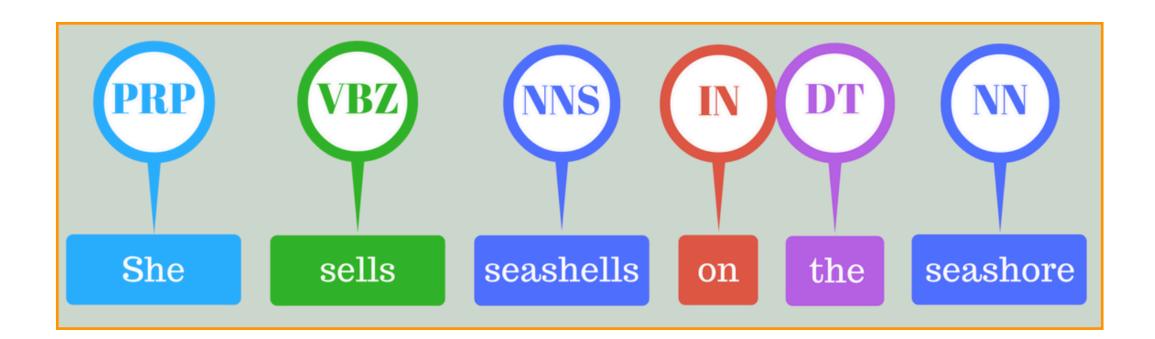
of-

abel ies.



https://stanfordnlp.github.io/CoreNLP/pipeline.html

What are part of speech tags?

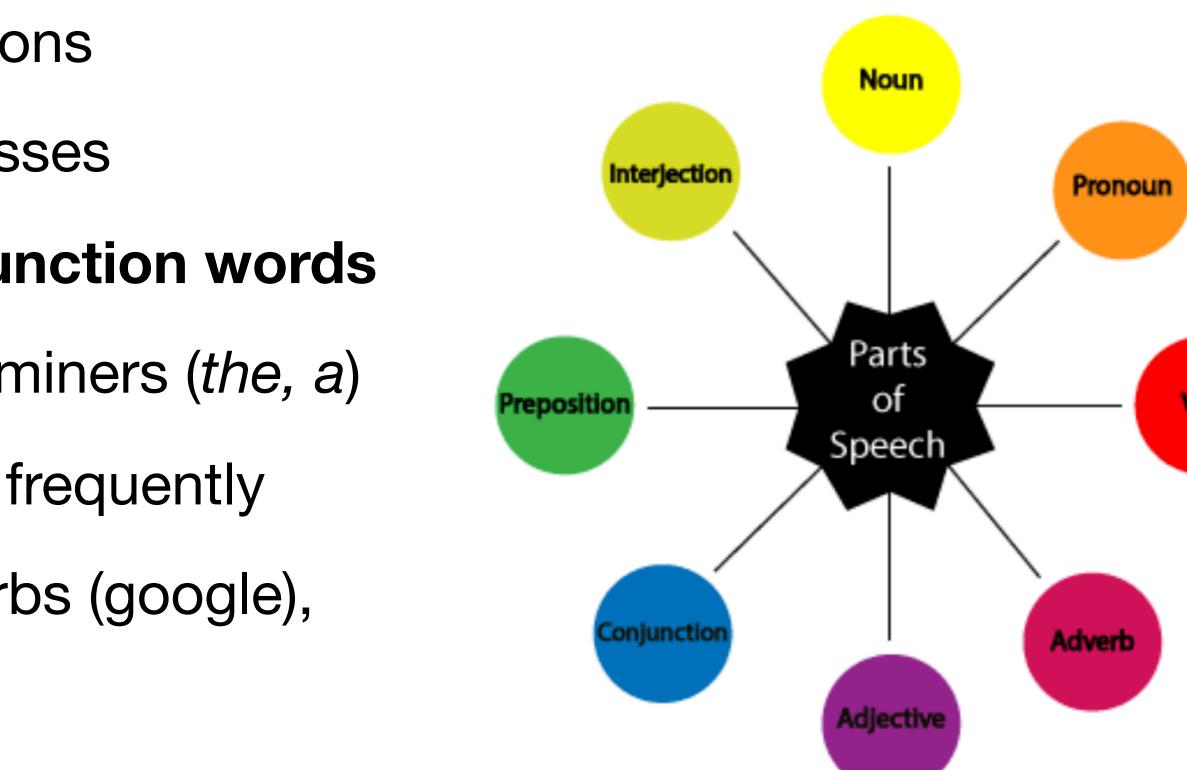


- 1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. The/DT old/NN man/VBP the/DT boat/NN

- Word classes or syntactic categories •
 - Reveal useful information about a ulletword (and its neighbors!)

- Different words have different functions
- Can be roughly divided into two classes •
- **Closed class:** fixed membership, **function words** lacksquare
 - e.g. prepositions (*in, on, of*), determiners (*the, a*)
- **Open class**: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives, adverbs

Parts of Speech



How many part of speech tags do you think English has? A) < 10 B) 10 - 20 C) 20 - 40 D) > 40

The answer is (D) - well, depends on definitions!

Parts of Speech

Penn treebank part-of-speech tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	$[, (, \{, <$
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), $\}, >$
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Other corpora: Brown, Switchboard

45 tags (*Marcus et al., 1993*)

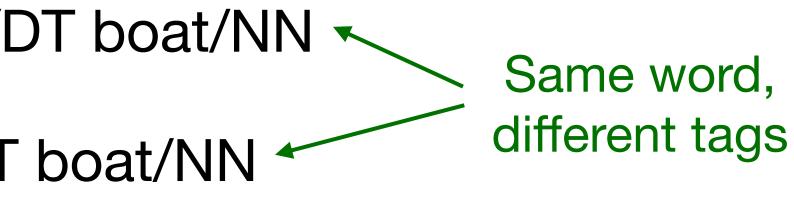
based on Wall Street Journal (WSJ)

Part of speech tagging

- Tag each word in a sentence with its part of speech •
- Disambiguation task: each word might have different functions in different contexts •
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VBP the/DT boat/NN

earnings growth took a **back/JJ** seat a small building in the **back/NN** a clear majority of senators **back/VBP** the bill Dave began to **back/VB** toward the door enable the country to buy **back/RP** about debt I was twenty-one **back/RB** then

VB: Verb, base form, RP: particle, RB: adverb



- Some words have many functions!
- JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present

Part of speech tagging

- Tag each word in a sentence with its part of speech
- Disambiguation task: each word might have different senses/functions

Types:		WS	SJ	Bro	wn	
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)	
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)	
Tokens:						
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)	
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)	

- Types = distinct words in the corpus
- Tokens = all words in the corpus (can be repeated)

Unambiguous types: Jane \rightarrow NNP, hesitantly \rightarrow RB

A simple baseline

- Many words might be easy to tag •
- most in the training set. (e.g. man/NN)

How accurate do you think this baseline would be at tagging words?

A) <50% B) 50-75% C) 75-90% D) >90%

Most frequent class: Assign each word to the class it occurred

The answer is (D)

A simple baseline

- Many words might be easy to tag
- most in the training set. (e.g. man/NN)
- State of the art ~ 97%
- Average English sentence ~14 words
 - Sentence level accuracies: $0.92^{14} = 31\%$ vs $0.97^{14} = 65\%$
- POS tagging not solved yet!

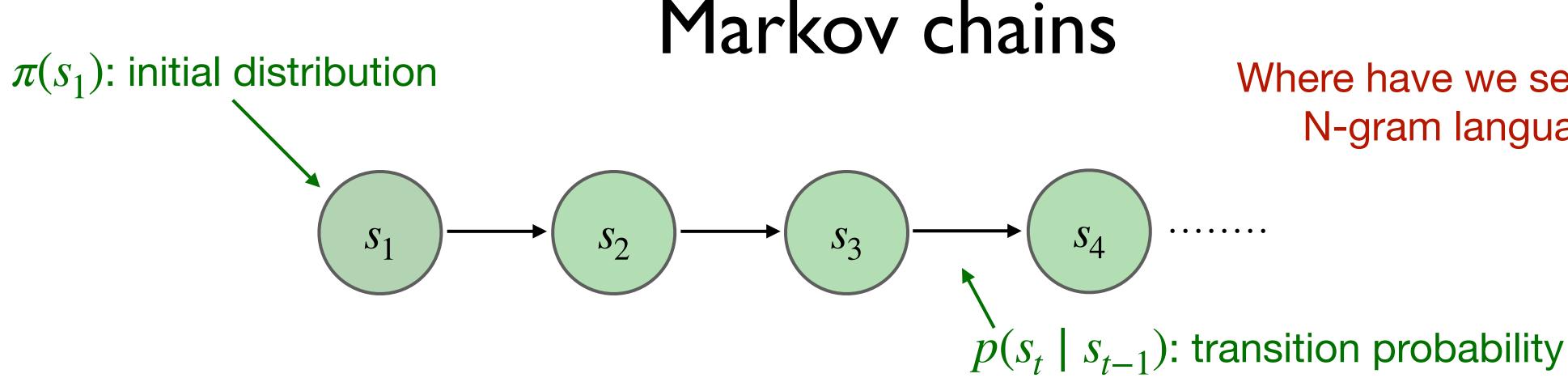
Most frequent class: Assign each word to the class it occurred

Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!

Some observations

- The function (or POS) of a word depends on its context
 - The/DT old/JJ man/NN bought/VBP the/DT boat/NN
 - The/DT old/NN man/VBP the/DT boat/NN
- Certain POS combinations are extremely unlikely
 - *<JJ, DT>* ("good the") or *<DT, IN>* ("the in")
- Better to make decisions on entire sentences instead of individual words

Hidden Markov Models

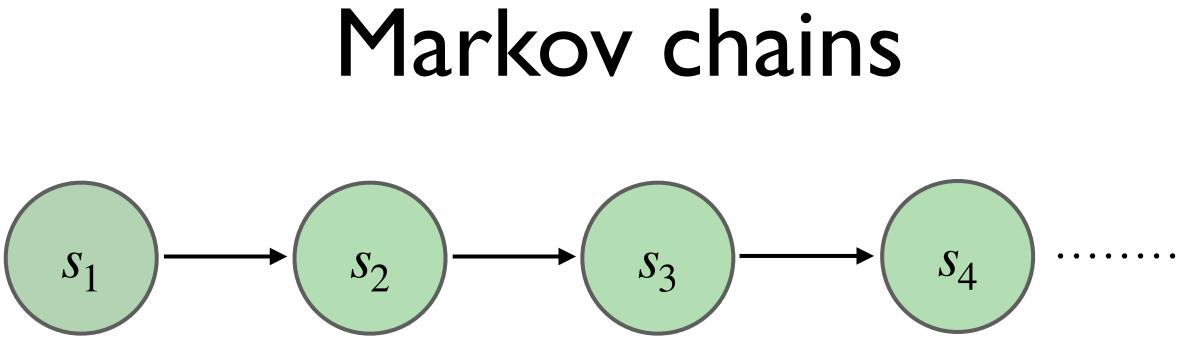


- Model probabilities of **sequences** of variables
- •
- Markov assumption: $P(s_t | s_1, s_2, ...$
- A Markov chain is specified by
 - Initial probability distribution $\pi(s), \forall s \in \{1, ..., K\}$ •
 - Transition probability matrix $(K \times K)$

Where have we seen this before? N-gram language models!

Each state can take one of K values (can assume {1, 2, ..., K} for simplicity)

$$\dots, s_{t-1}) \approx P(s_t | s_{t-1})$$

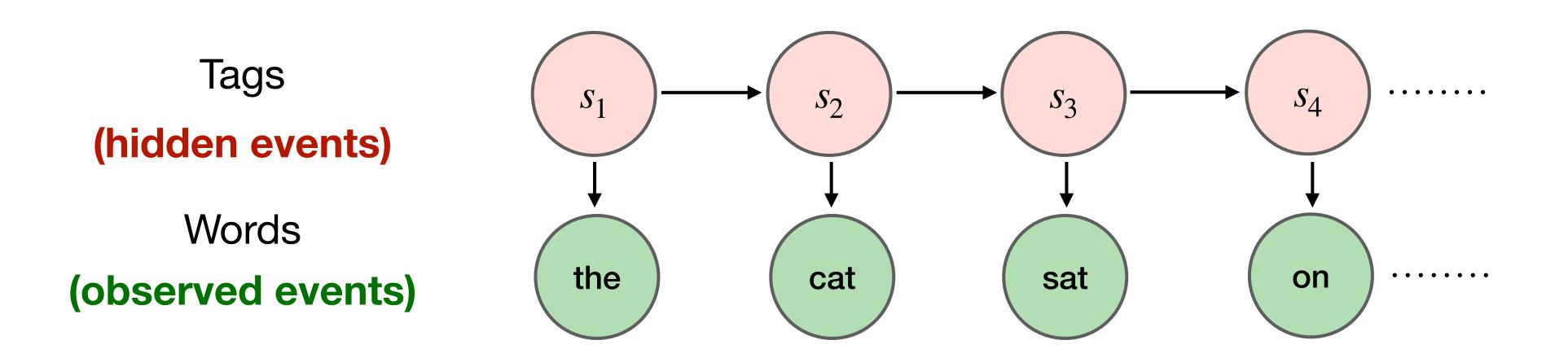




- The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- Markov chains can help us model entire sentences.

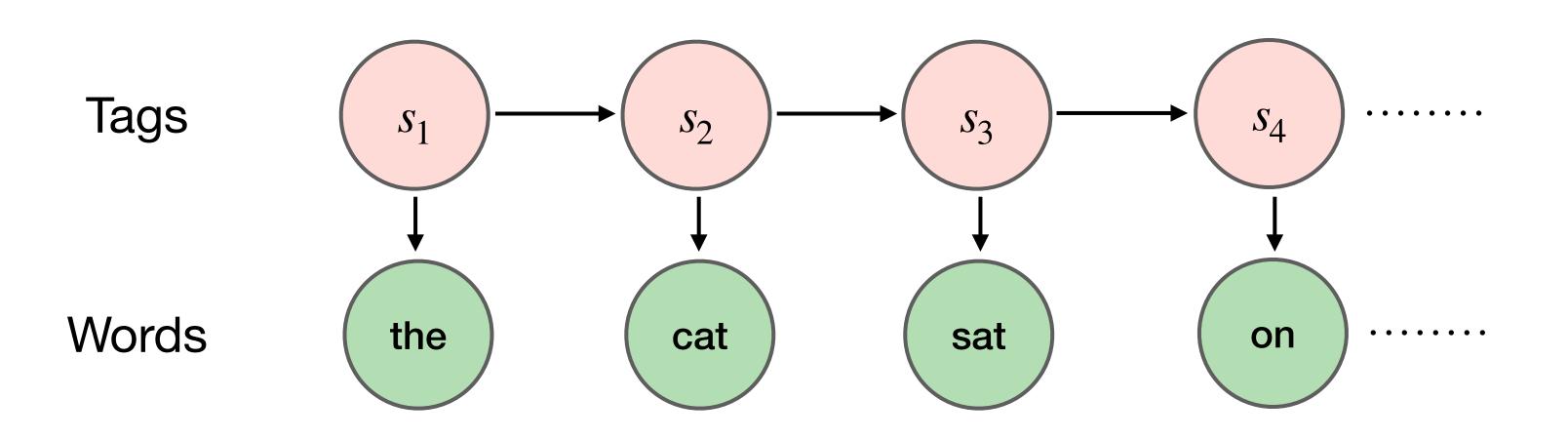
- The/?? cat/?? sat/?? on/?? the/?? mat/??
- BUT we don't normally see sequences of POS tags appearing in text

Hidden Markov Model (HMM)



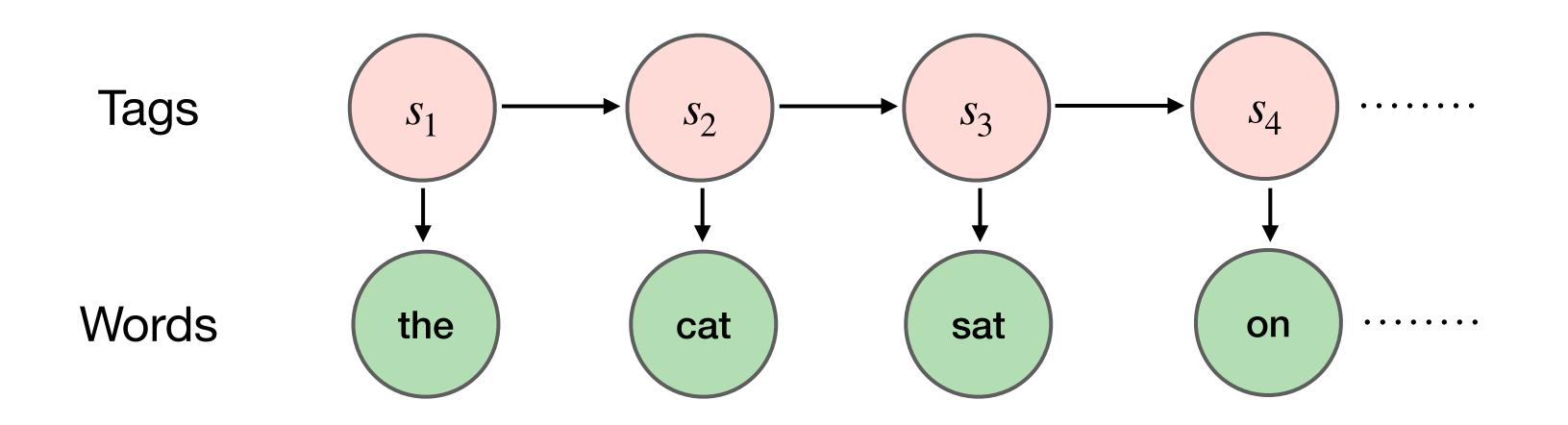
- We don't normally see sequences of POS tags in text
- However, we do observe the words!
- The HMM allows us to jointly reason over both hidden and observed events.
 - Assume that each position has a tag that generates a word

Components of an HMM



- 2. Initial state probability distribution $\pi(s_1)$
- 3. Transition probabilities $P(s_{t+1} | s_t)$
- 4. Emission probabilities $P(o_t | s_t)$

1. Set of states S = {1, 2, ..., K} and set of observations $O = \{o_1, ..., o_n\}$ $o_i \in V$



Markov assumption: 1.

$$P(s_t | s_1, \ldots, s_{t-1}) \approx$$

Output independence: 2.

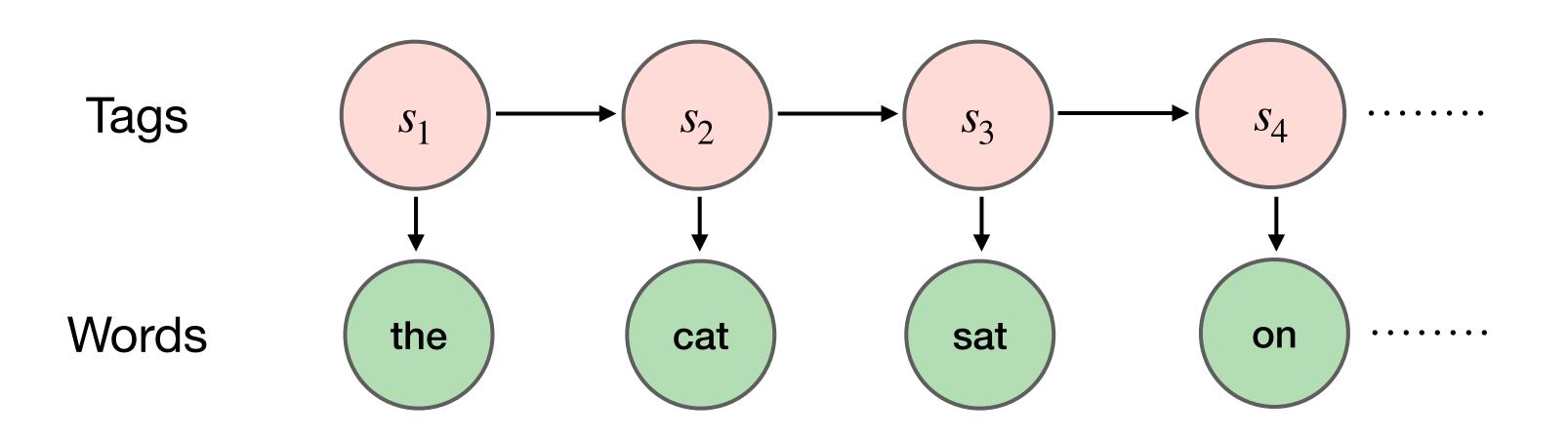
$$P(o_t | s_1, \ldots, s_t) \approx$$

Assumptions

 $P(s_t | s_{t-1})$

 $\approx P(o_t | s_t)$

Sequence likelihood



$$P(S, O) = P(s_1, s_2, \dots, s_n, o_1, o_2, \dots, o_n)$$

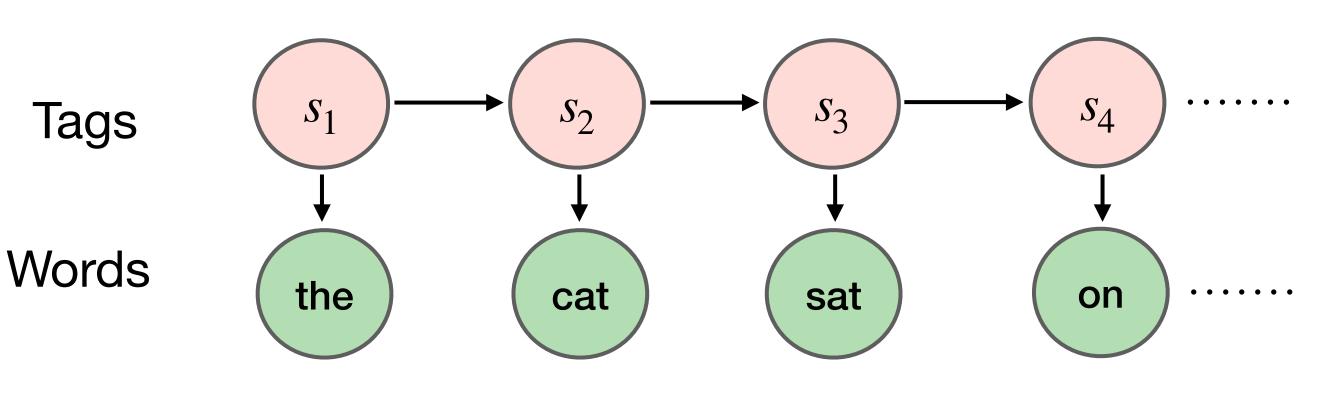
= $\pi(s_1)p(o_1 | s_1) \prod_{i=2}^n P(s_i | s_{i-1})P(o_i | s_i)$
transition emission
probability probability

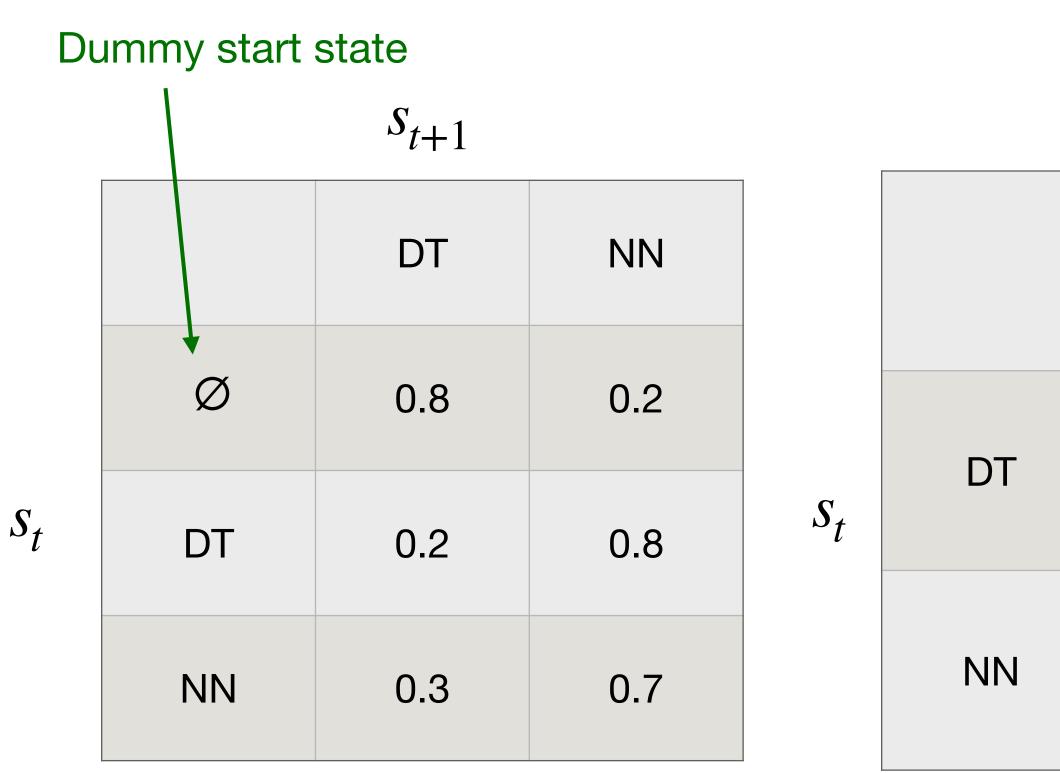
If we add a dummy state $s_0 = \emptyset$ at the beginning,

$$P(S, O) = \prod_{i=1}^{n} P(s_i)$$

 $|s_{i-1})P(o_i | s_i) \quad [\pi(s_1) = P(s_1 | \emptyset)]$

Example: Sequence likelihood





 O_t

the	cat
0.9	0.1
0.5	0.5

What is the joint probability P(the cat, DT NN)?

A) (0.8 * 0.8) * (0.9 * 0.5)B) (0.2 * 0.8) * (0.9 * 0.5)C) (0.3 * 0.7) * (0.5 * 0.5)D) (0.8 * 0.2) * (0.5 * 0.1)

The answer is (A).

Learning

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./. **3** Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

Maximum likelihood estimates: $P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$ $P(o \mid s) = \frac{Count(s, o)}{Count(s)}$

Q: How many probabilities to estimate?

A: transition probabilities - $(K + 1) \times K$ emission probabilities - $|V| \times K$

Learning example

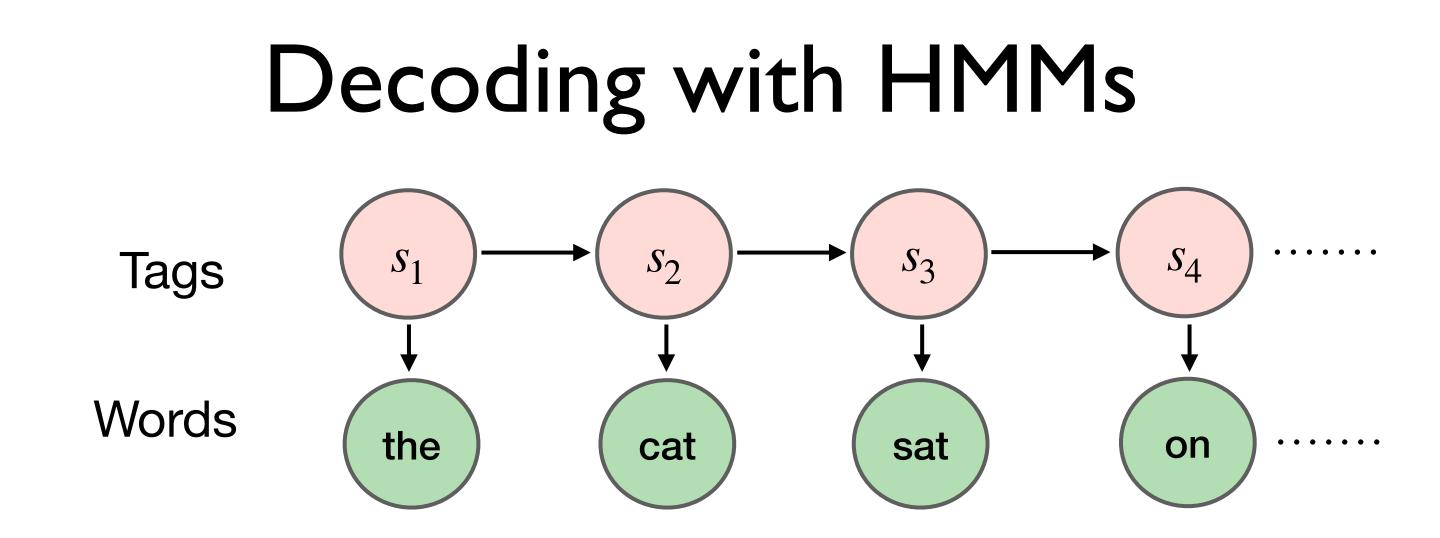
- 1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. The/DT old/NN man/VBP the/DT boat/NN

$$\pi(DT) = P(DT \mid \emptyset) = 2/3$$

- P(NN|DT) = 4/4 P(DT|IN) = 1/2
- P(cat | NN) = 1/4 P(the | DT) = 2/4

Maximum likelihood estimates: $P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$ $P(o \mid s) = \frac{Count(s, o)}{Count(s)}$

(assuming we differentiate cased vs uncased words)



Task: Find the most probable sequence of states $S = s_1, s_2, \ldots, s_n$ given the observations $O = o_1, o_2, \ldots, o_n$

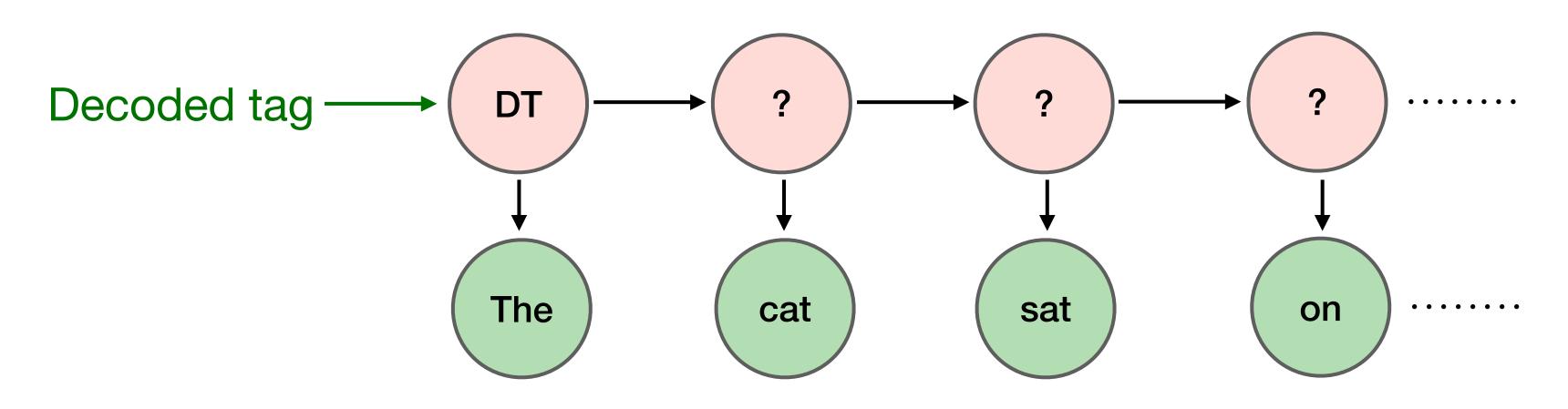
 $\hat{S} = \arg\max_{S} P(S \mid O) = \arg\max_{S} \frac{P(O \mid S)P(S)}{P(O)}$ $= \arg \max P(O \mid S)P(S)$ $= \arg \max \prod P(s_i \mid s_{i-1})P(o_i \mid s_i)$ $s_1, \ldots, s_n \quad \overline{i=1}$

[Bayes' Rule]

How can we maximize this? Search over all state sequences?

Greedy search

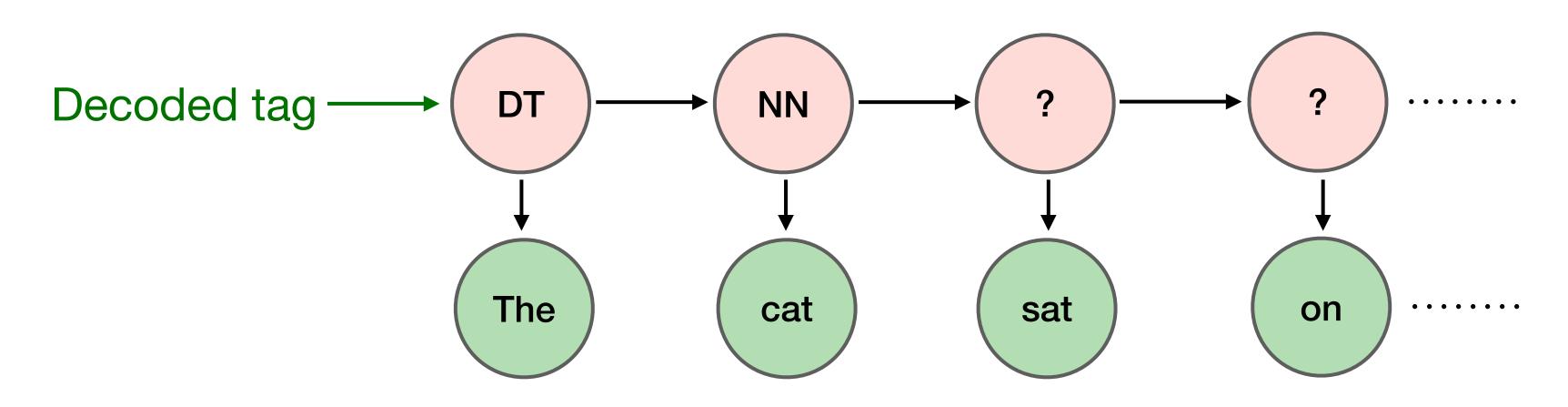
• Decode one state at at time



 $\underset{s}{\arg \max \pi(s_1 = s)p(\text{The} \mid s) = \text{DT}}$

Greedy search

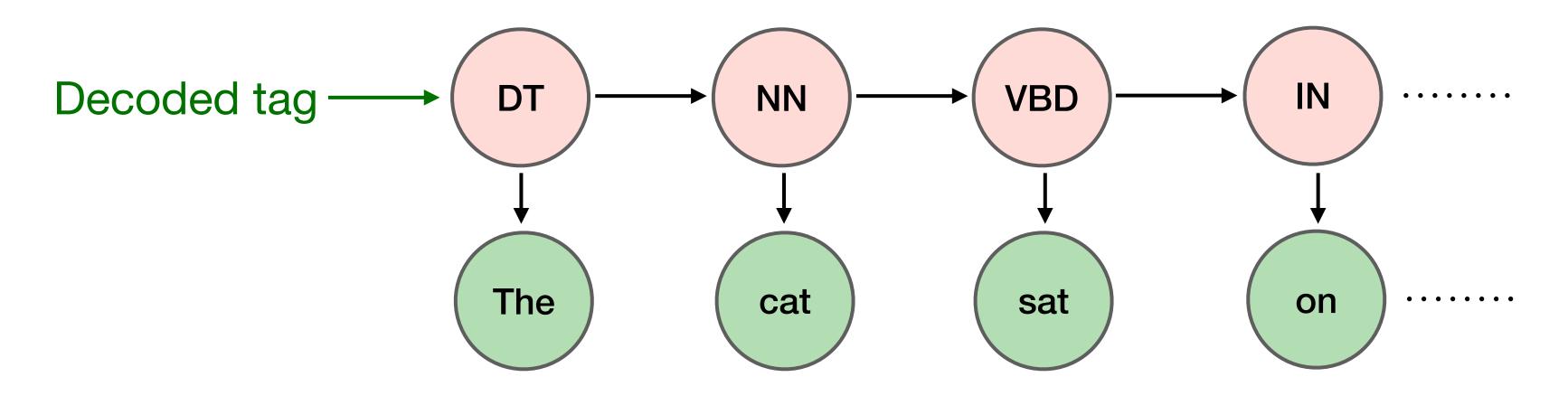
• Decode one state at at time



 $\underset{s}{\operatorname{arg\,max}\,} p(s \mid DT)p(\operatorname{cat} \mid s) = \mathsf{NN}$

Greedy search

• Decode one state at at time



 $\hat{s}_{t} = \arg \max_{s} p(s \mid \hat{s}_{t-1}) p(o_{t} \mid s)$ Very efficient but it doesn't guarantee

Very efficient but it doesn't guarantee to produce the overall optimal sequence

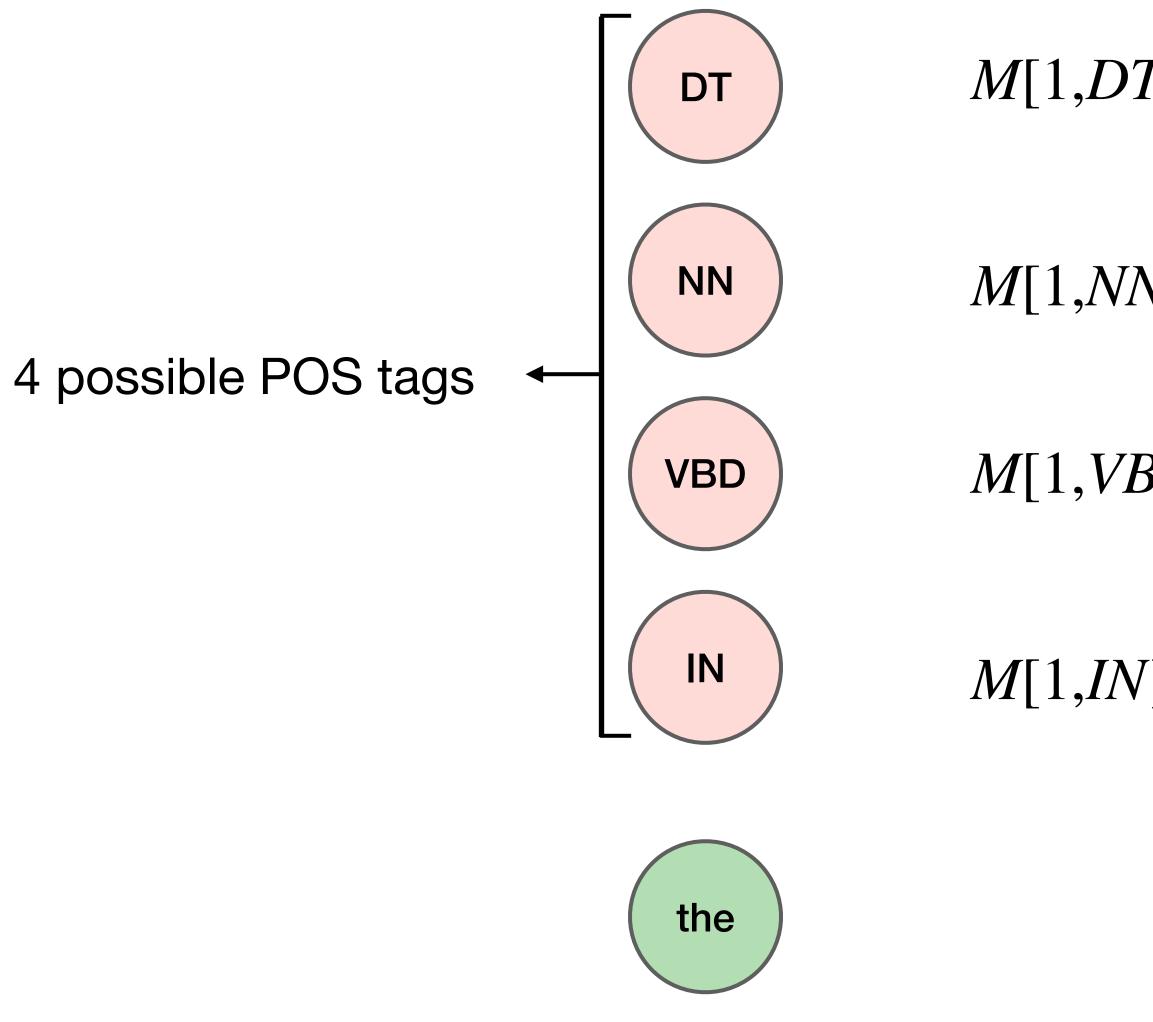
Viterbi decoding

- Use dynamic programming! \bullet
- Maintain some extra data structures \bullet
- Probability lattice, M[T, K] and backtracking matrix, B[T, K]
 - T: Number of time steps
 - *K* : Number of states
- j at time i,

• M[i, j] stores joint probability of most probable sequence of states ending with state

• B[i, j] is the tag at time i-1 in the most probable sequence ending with tag j at time i

Viterbi decoding



 $M[1,DT] = \pi(DT) P(\mathsf{the} | DT)$

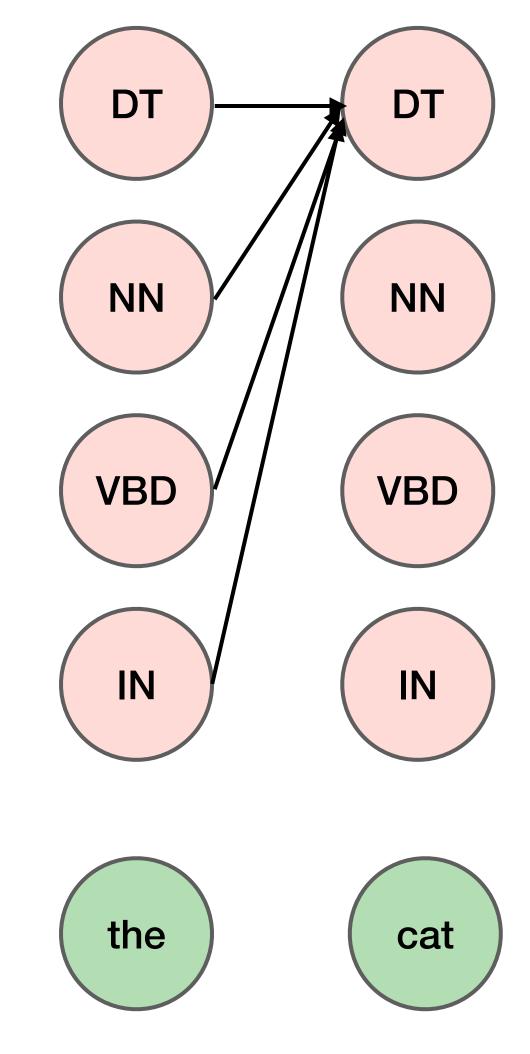
 $M[1,NN] = \pi(NN) P(\text{the}|NN)$

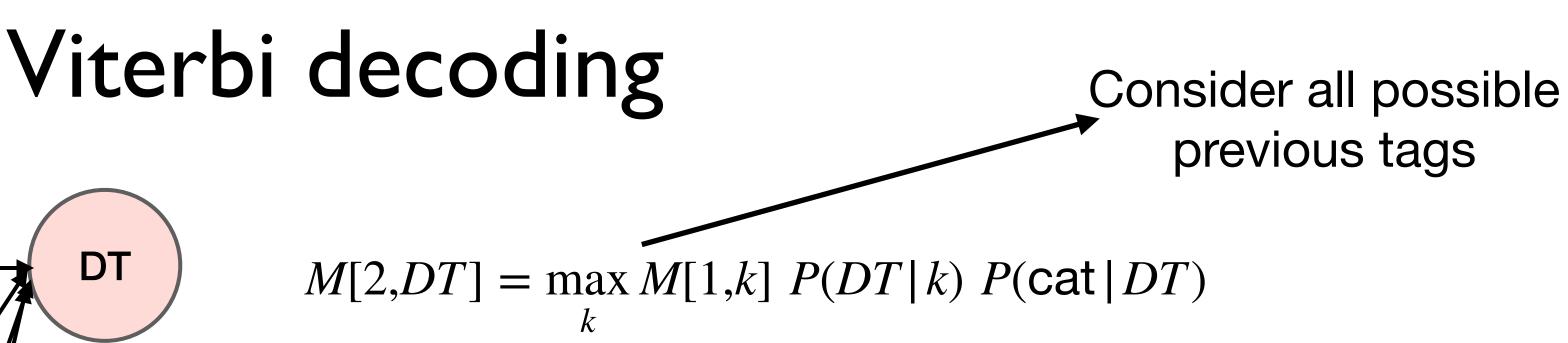
Initialize the table

 $M[1, VBD] = \pi(VBD) P(\text{the} | VBD)$

 $M[1,IN] = \pi(IN) P(\text{the} | IN)$

Forward





 $M[2,NN] = \max M[1,k] P(NN|k) P(\operatorname{cat}|NN)$

 $M[2,VBD] = \max M[1,k] P(VBD | k) P(\operatorname{cat} | VBD)$

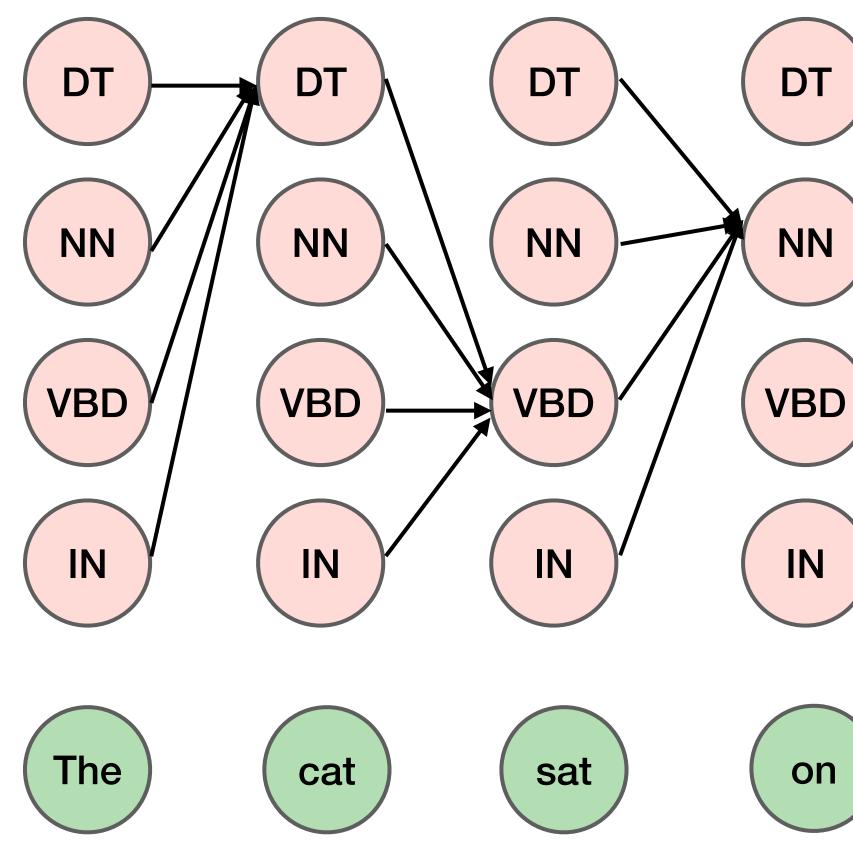
 $M[2,IN] = \max M[1,k] P(IN|k) P(\operatorname{cat}|IN)$ k

Forward

Viterbi decoding

.

.



What is the time complexity of this algorithm?

A) O(n)B) O(nK)C) $O(nK^2)$ *D*) $O(n^2K)$

The answer is (C).

n = number of timesteps K = number of states

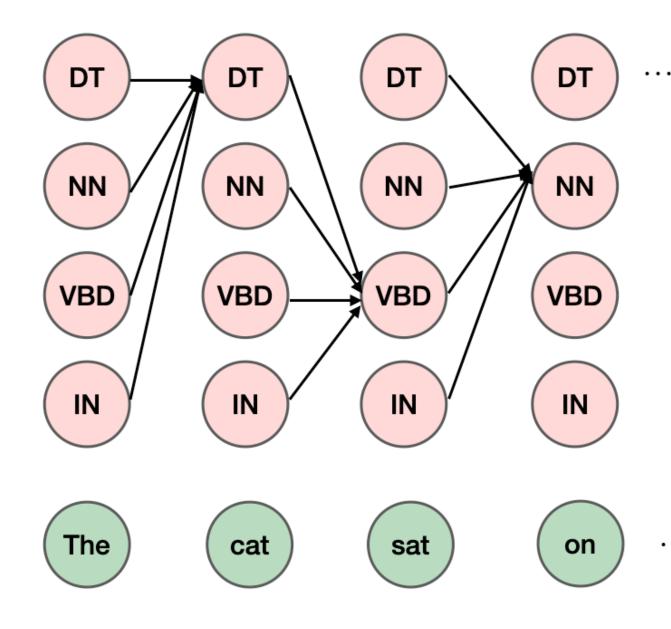
```
M[i,j] = \max_{i} M[i-1,k] P(s_{j} | s_{k}) P(o_{i} | s_{j}) \quad 1 \le k \le K \quad 1 \le i \le n
```


Viterbi decoding

Backward: Pick max M[n, k] and backtrack using B K

• In practice, we maximize sum of log probabilities (or minimize the sum of negative log probabilities) instead of maximize the product of probabilities

$$M[2,NN] = \max_{k} \{M[1,k] \ P(N)\}$$
$$M[2,NN] = \max_{k} \{M[1,k] + \log_{k} M[1,k] \}$$

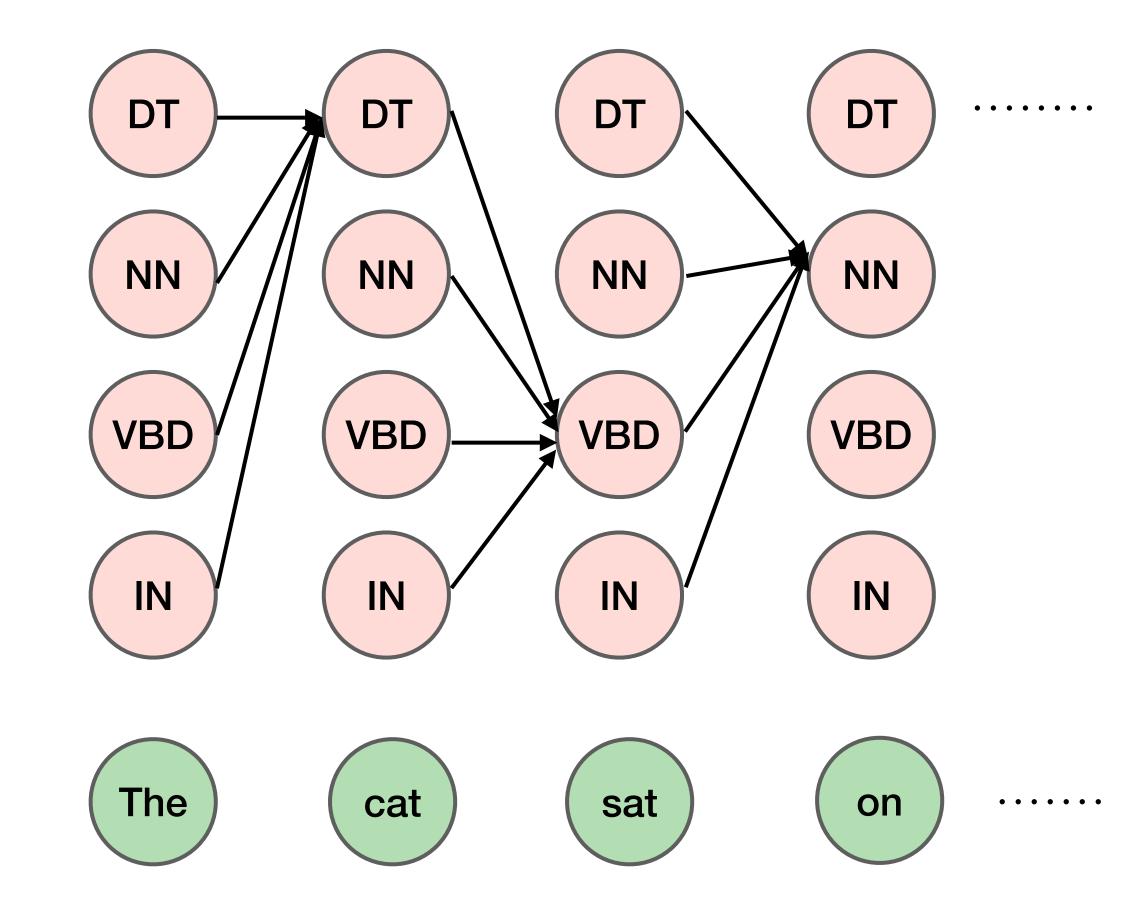


NN(k) P(cat(NN))

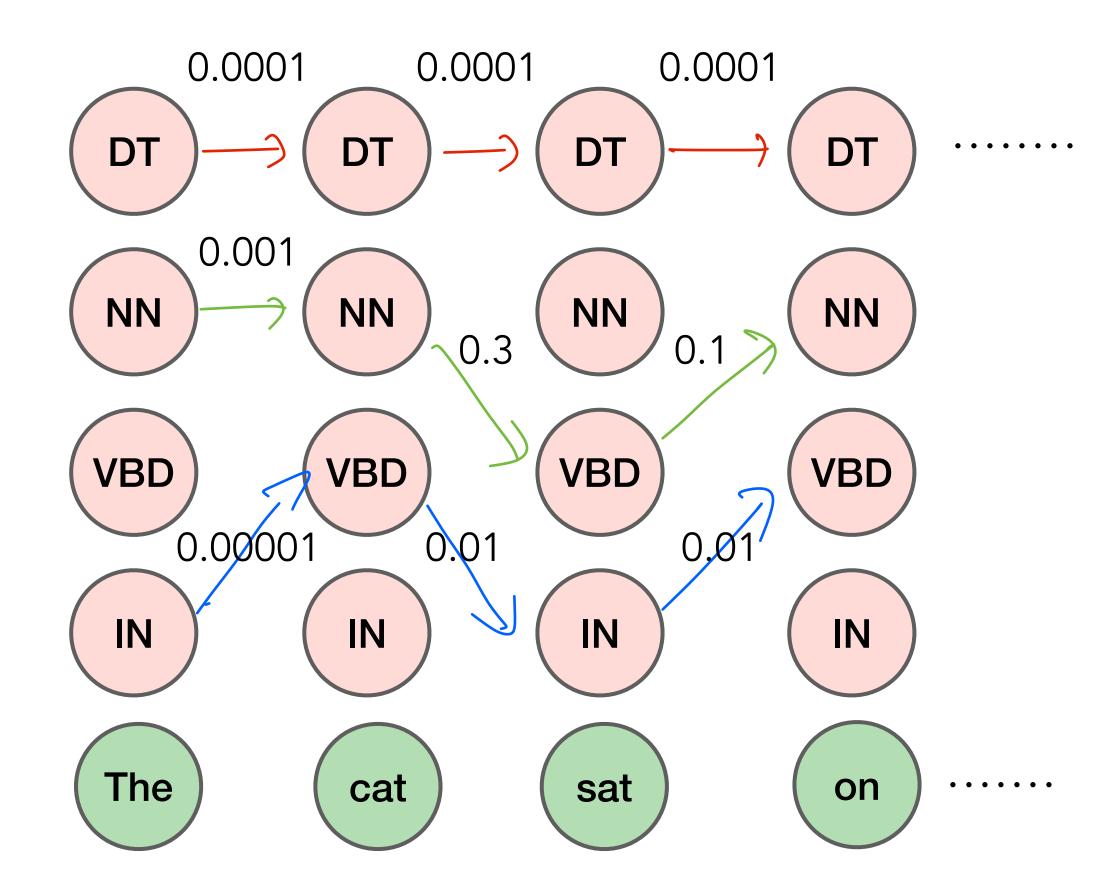
 $\operatorname{og} P(NN|k) + \operatorname{log} P(\operatorname{cat}|NN)$

.

If K (number of possible hidden states) is too large, Viterbi is too expensive!



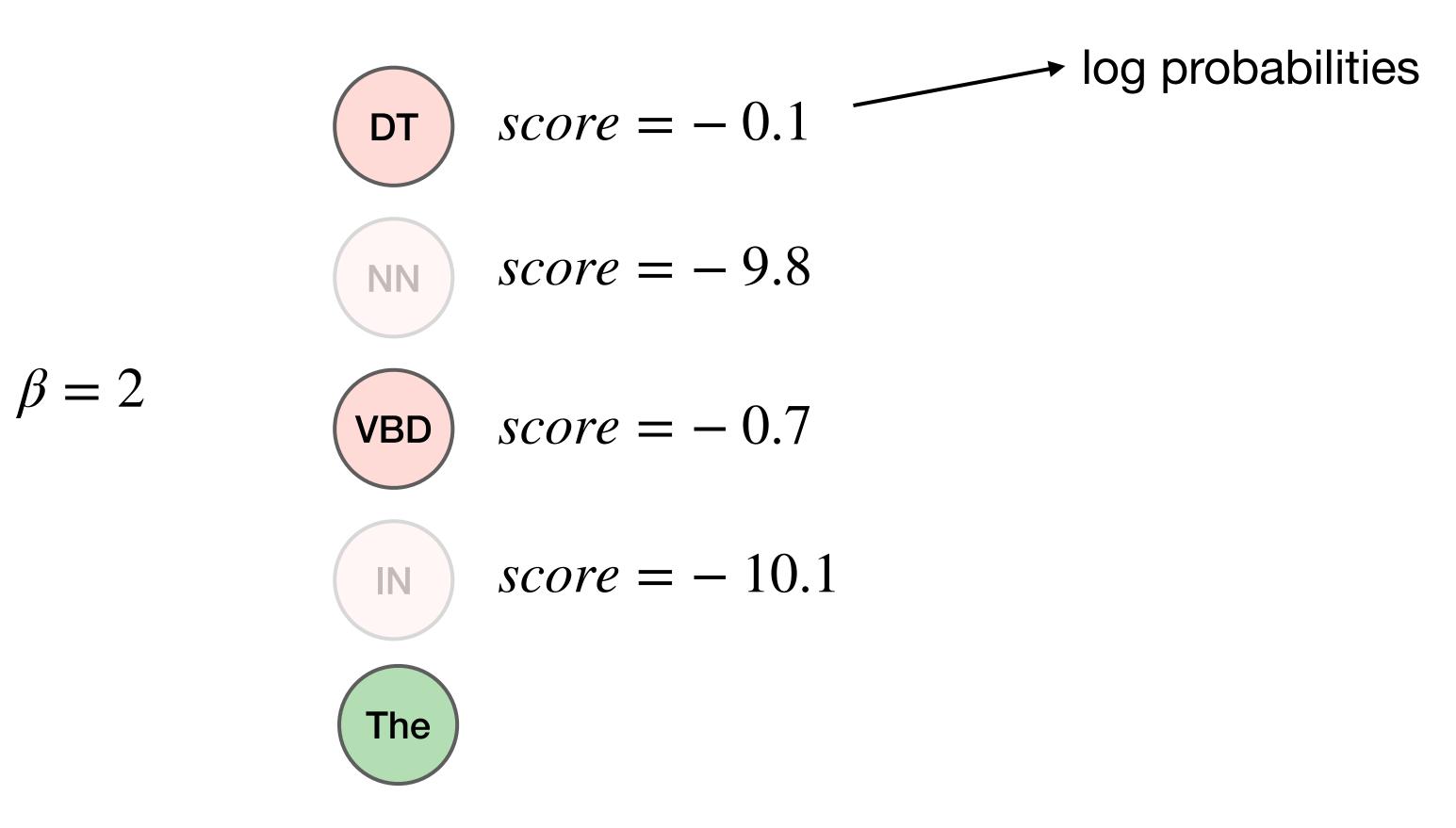
•



Observation: Many paths have very low likelihood!

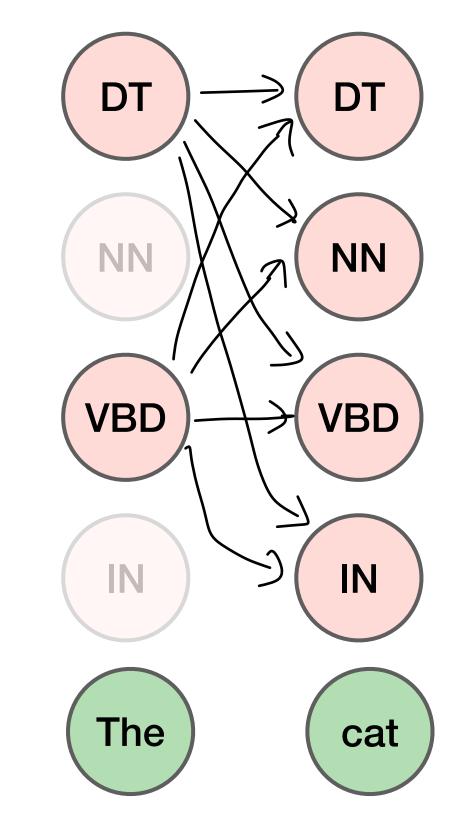
If K (number of possible hidden states) is too large, Viterbi is too expensive!

- Keep a fixed number of hypotheses at each point
- Beam width, β

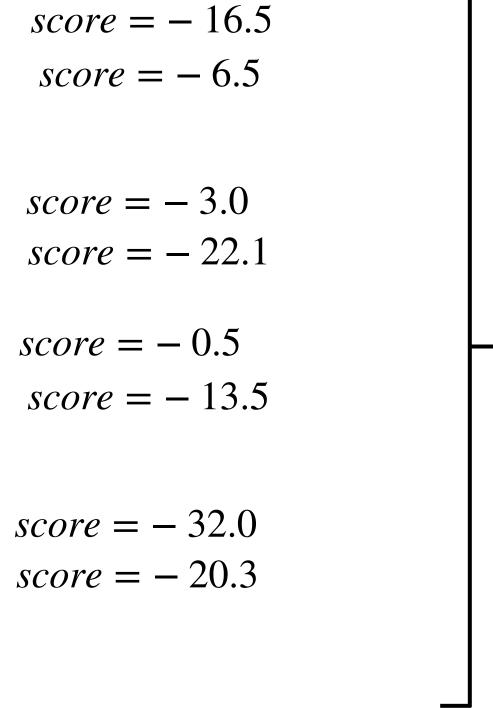


- Keep a fixed number of hypotheses at each point
- Beam width, β

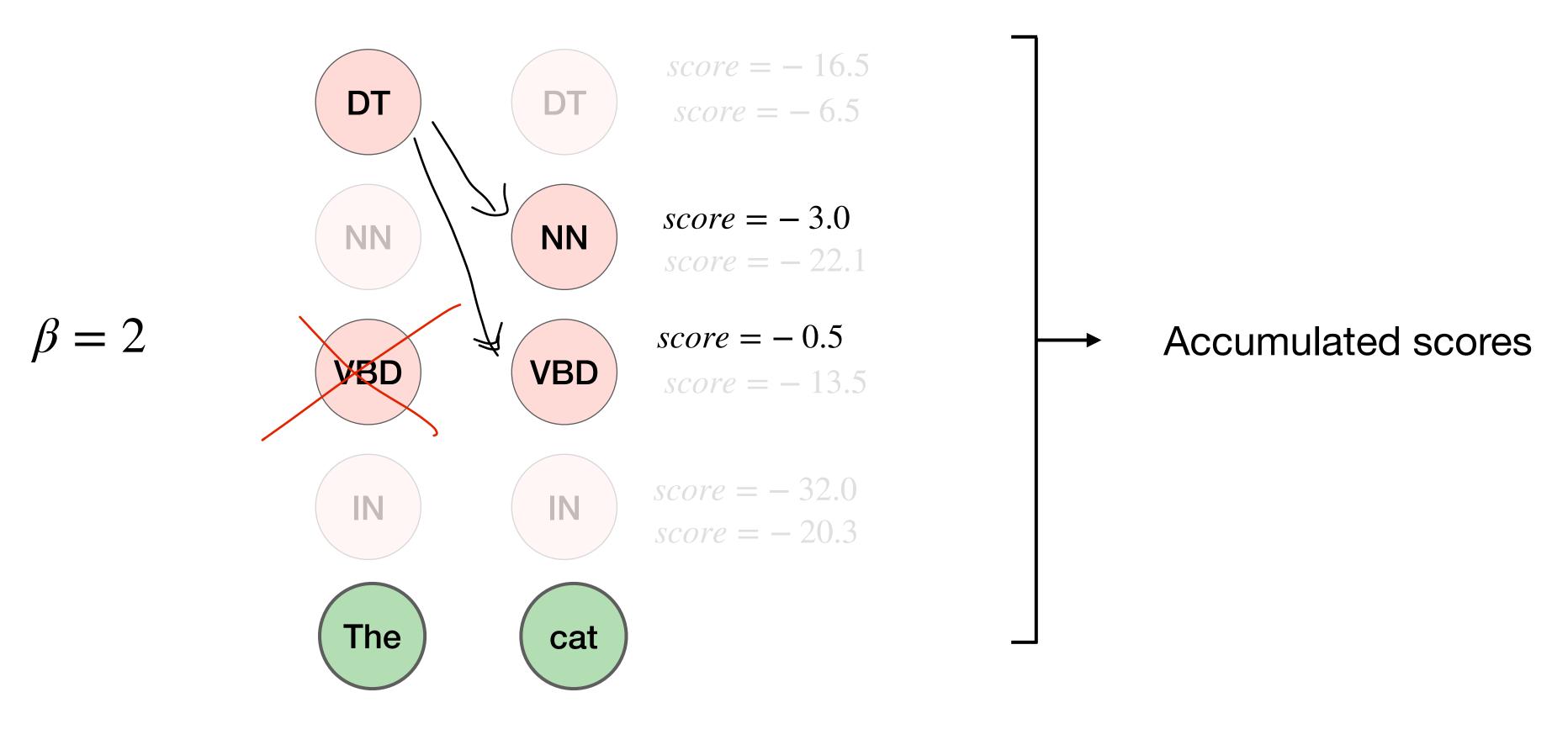
 $\beta = 2$



Step 1: Expand all partial sequences in current beam



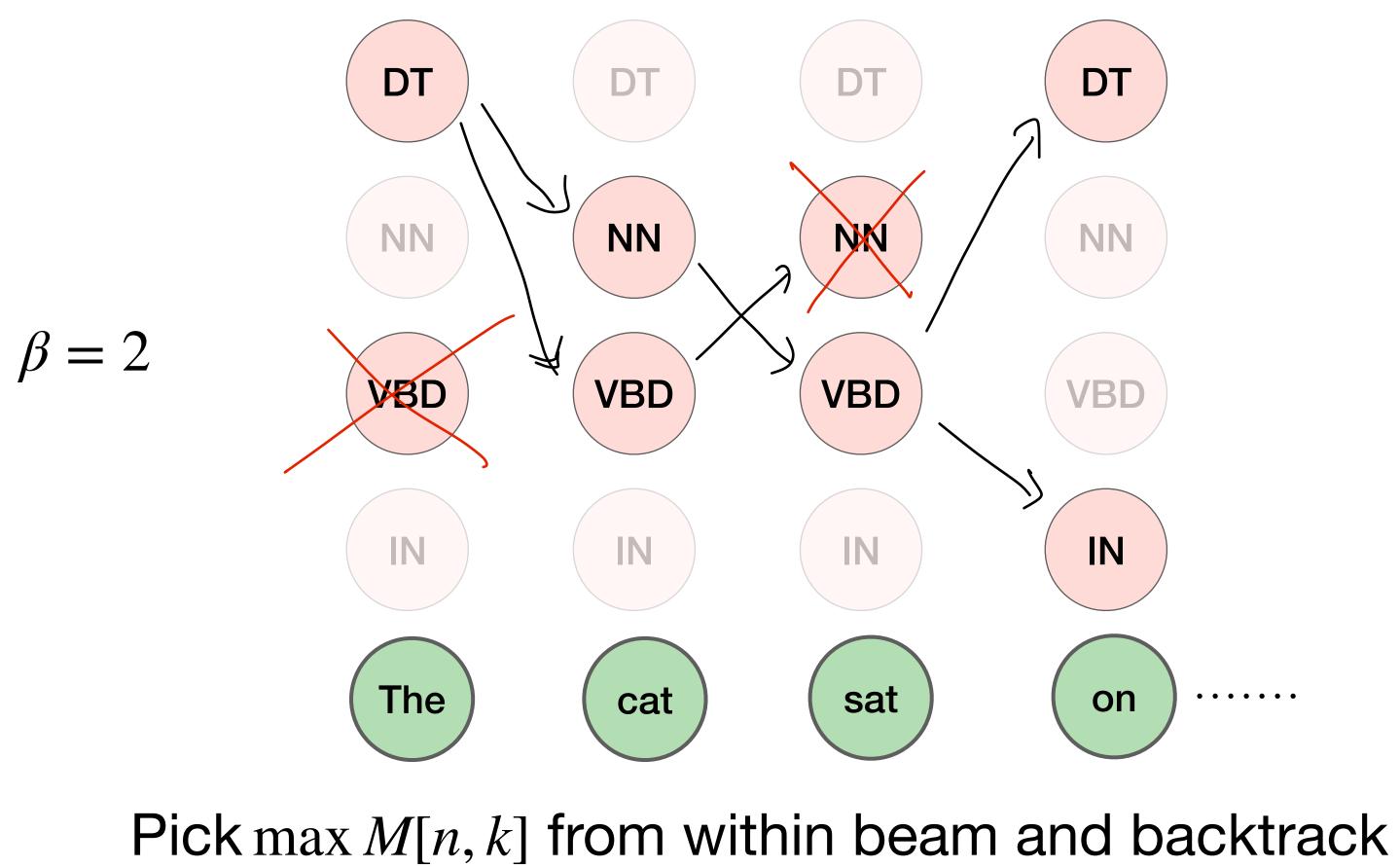
- Keep a fixed number of hypotheses at each point
- Beam width, β



Step 2: Prune set back to top β sequences (sort and select)

... and Repeat!

- Keep a fixed number of hypotheses at each point
- Beam width, β ullet



What is the time complexity of this algorithm?

n = number of timesteps K = number of states β = beam width

A: $O(nK\beta)$

- If K (number of states) is too large, Viterbi is too expensive!
- Keep a fixed number of hypotheses at each point
 - Beam width, β
- Trade-off (some) accuracy for computational savings
- **Final remark:** beam search is a common decoding method for any language ulletgeneration tasks (e.g., n-gram LMs, GPT-3)

Greedy: choose the most likely word!

- To predict the next word given a context of two words w_1, w_2 :

$$w_3 = \arg\max_{w \in V} P(w \mid w_1, w_2)$$