s

COS 484

Natural Language Processing

L5:VWord Embeddings ||

Spring 2024

(Some slides adapted from Chris Manning, Dan Jurafsky)

WQ I"CI em bedd | N gs Goal: represent words as short (50-300

dimensional) & dense (real-valued) vectors

Count_based approaches PrediCtion'based approaCheS

e Used since the 90s * Formulated as a machine learning problem
e Sparse word-word co-occurrence PPMI matrix * Word2vec (Mikolov et al., 2013)

e Decomposed with SVD GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)
“Similar words occur in similar contexts”

VVord embeddings: the learning problem

Learning vectors from text for representing words

—0.224 —0.124
* Input: a large text corpus, vocabulary V, | 0.130 vue — | 0430
vector dimension d (e.g., 300) Yeat = | _3.290 o8 —0.200
; 0.276 0.529
e Output: [f:V =R
0.234 [0.290
) 0.266 | —0.441
. : i the — language —
Each coordinate/dimension of the vector 0.239 S 0.762
—0.199 \ 0.982 /

doesn’t have a particular interpretation

VWord embeddings

e Basic property: similar words have similar vectors

word w*= “sweden”

arg max cos(e(w), e(w™))

norway
denmark
finland
switzerland
belgium
netherlands
iceland
estonia
slovenia

Cosine distance

. 760124
7115460
.620022
. 088132
. 285835
. 274631
. 062368
. 047621
.031408

S oo e ®

cos(u, v) ranges between -1 and 1

Word2vec: How does it work?

word2vec

e (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

e (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

/ INPUT PROJECTION OUTPUT \

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

o w(t)

w(t+1)

Thomas Mikolov w(t+2)

Continuous Bag of Words (CBOW)

w(t)

_

—>

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Skip-gram

Skip-gram

e Assume that we have a large corpus w{. W,wW- € V o
J P > 2o e P97 _A classification

 Key idea: Use each word to predict other words in its context “ problem!

e (Context: a fixed window of size 2m (m = 2 in the example)

P(b | a) = given the center word is

P(Wi_o | wp) P(w,,, | w,) a, what is the probability that b is a
context word?

P(We—q | we) P(Weyq | We)
problems turning banking crises as .. 1(-|a)isaprobability distrioution
\ ' A Y , defined over V: Z Pwla) =1
outside context words center word outside context words weV
in window of size 2 at position t in window of size 2

We are going to define
this distribution soon!

Skip-gram

P(we_p | we) P(Weyp | W)

P(w¢—4 | We) P(Weyq | We)

Convert into training data:
(into, problems)
(into, turning)

(into, banking)
(into, crises)
(
(
(
(

problems turning banking crises as

\ J \)
| 1 \ Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

banking, turning)
banking, into)
banking, crises)
banklng, as)

P(wWe_p | W) P(Weyo | We)

problems turning crises as

\)\ J
!)
Y I ;

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Our goal is to find parameters that can maximize
P(problems | into) X P(turning | into) X P(banking | into) X P(crises | into) X P(turning | banking) X P(into | banking) X P(crises | banking) X P(as | banking)...

Skip-gram: objective function

e For each positiont = 1,2,...T, predict context words within context size m,

given center word w:
all the parameters to be optimized

T
co)=1]1 I Py, |w;6)
t=1 —m<j<m,j#

0

e [tis equivalent to minimizing the (average) negative log likelihood:

T
1 1
J(0) = ——=log L(0) = — > Y log P(wiyj | wy;6)

t=1 —m<j<m,j#0

How to define P(w,; | w;; 0)?

e Use two sets of vectors for each word in the vocabulary
u, € R4 vector for center word a, Va € V

v, € R% vector for context word b, Vb € V

e Use inner product u, - v, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

Recall that P(- | a) is a probability
distribution defined over V...

... Vs multinominal logistic regression

exp(w. - X+ b
Multinomial logistic ~ P(y = ¢ | x) = #
regression; Zj:l eXp(Wj . X + bj)

e Essentially a [V|-way classification problem

> rey €Xp(Wy, - Vi) o If wefixu,, , itis reduced to a multinomial
logistic regression problem.

e However, since we have to learn both u and v
together, the training objective is non-convex.

... Vs multinominal logistic regression

“convex” ‘ “non-convex”

® [t is hard to find a global minimum

® But can still use stochastic gradient descent to optimize 6:

AUFD =) — V4.7 ()

Important note

| exp(Ww, * V., ;)
JO)=—=) log _ :
t=1 —m<j<m,j#0 2 kev eXP(Uw, - Vi)

e |n this formulation, we don’t care about the classification task itself like we do for
the logistic regression model we saw previously.

* The key point is that the parameters used to optimize this training objective —

when the training corpus is large enough—can give us very good representations
of words (following the principle of distributional hypothesis)!

How many parameters in this model? m

| o exp(UWw, * Vuw,, ;)
J(Q) = — Z log J
t=1 —m<j<m,j#£0 Zkev exp(Wy, * Vi)

How many parameters does this model have (i.e. what is size of 6)?

(a) d|V]

(b) 2d|V| d = dimension of each vector
(c) 2m|V|

(d) 2md|V| The answer is (b).
Each word has two d-dimensional vectors, soitis2 X | V| X d.

word2vec formulation

)= Y P g e

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window,

e.g., P(dog | dog) should be low. If we use one set of vectors only,
it essentially needs to minimize Ugqg * Ugog--

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just u,, but you can
also concatenate the two vectors..

How to train this model!?

J(0) = — : Z Z lo eXPp (U, ’thH)

s g
1T exp(W,,, * Vi
t=1 —m<j<m,j#£0 Z"JEV P(Uuw, - V)

e Jo train such a model, we need to compute
the vector gradient 7, j(9) =7

Vaardvark
Ua

 Remember that @ represents all 2d | V|

model parameters, in one vector. ”
H — zebra

Uagardvark
uO) g

Uzebra

Vectorized gradients

f(x)=x-a of _

Rn &—a

X,a c.

f =x1a1 + 2202 + ...+ THan,

of _of of of

0x [6’331 7 6’372 (?xn]

Vectorized gradients: exercises [ﬂ]

0
Let f = exp(W - X), what is the value of d_f? w,x € R"

X
(a) W
(b) exp(W - X) The answer is (c).
(c) exp(w - X)W "

0 exp(), . wX)

(d) x — = Zk_l - = X

WX W,
— p(g; X)W,

l

OX;

l

Let’s compute gradients for word2vec

T
1 OXp (uwt * th])
J(0) = = E E log ik

t=1 —m<j<m,j#0 Zkev exp(Uw, - Vi)

Consider one pair of center/context words (, ¢):

o (exp(u; - V))

Zkev exp(u; - Vi)

We need to compute the gradient of y with respect to

wandv,, VkeV

Let’s compute gradients for word2vec

(exp(uy - V)) Oy _ O(—uy-ve) 9Oog) jecy exp(uy - vy))
y _— — log P I
Zke\/ exp(ut - Vk) ouy ouy ouy
0 pey exp(ug-vg)
— vV I aut
y = — log(exp(uy - v¢)) + 10g(z exp(uy - vi)) ‘ D kev exp(ug - vi)
keV
= —u; - V. + log(z exp(us - vi))

keV

Recall that

exp(Wy, * Vi, +j)

ZkEV eXP(th ' Vk) = —V, + Z P(k | t)Vk

Plwiyj | we) =

Gradients for word2vec

What about context vectors?

dy {(P(ktt)l)ut k=c y:_log< exp(u; - ve))

OV, Pk | t)u k + c > _key €xp(ug - vi)

See assignment 2 :)

Convert the training data into:
. (into, problems)
Overall algorithm into, turning
(into, banking)
(into, crises)
(banking, turning)
(banking, into)
(
(

e |nput: text corpus, embedding size d, vocabulary V, context size m ,
banking, crises)

e Initialize u, v; randomly Vi € V ba”"”Q’ as)
 Run through the training corpus and for each training instance (t, c):
. Update u e u— L W o vt Y Pk Vi
duy Juy keV
0 _ —
e Update Vi < Vi — 7 y,\v’kev Oy _ JPE[)=1uw k=c
OV OV P(k | t)uy k#c

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, ¢), you need to update v, with
all the words in the vocabulary! This is very expensive computationally.

W v+ Y Pl v Gy _ JPE[=1)u k=c
o keV OV P(k | t)u k# c

Negative sampling: instead of considering all the words in V, let’s randomly sample K
(5-20) negative examples.

o () !

T 1+ exp(—x)
exp(u; - v,
softmax: y = — log (p(u;)) |

> _key €xp(u - Vi) |

0.5+

K
Negative sampling: y = —log(o(u; - v.)) — Z i P(w) log(o(—uy - v;))
i=1

Skip-gram with negative sampling (SGNS)

Key idea: Convert the | V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, ¢), we don’t predict c among all the words in the
vocabulary. Instead, we predict (t, ¢) is a positive pair, and (t, ¢’) is a negative pair for a
small number of sampled c’.

positive examples + negative examples - K

t C t C t C Yy=— log(a(ut ’ Vc)) - Z Il:f’jf\a]’(u') 10g(0(_ut) Vj))
apricot tablespoon apricot aardvark apricot seven =1

apricot of apricot my apricot forever P(w): sampling according to

apricot jam apricot where apricot dear the frequency of words

apricot a apricot coaxial apricot 1f

Similar to binary logistic regression, but we need to
optimize u and v together.

Ply=1|t,c)=o0c(us - ve) ply=01t,d)=1—0c(us-vy) =c(—u; - ver)

Understanding SGNS

y = —log(o(us - ve)) — Z LinP(w) log(o(—uy - v;))
i=1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in @ for every (t, ¢) pair?

(a) Kd
(b) 2Kd
(o) (K+ 1)d

d) (K+ 2)d
(d) () The answer is (d).

We need to calculate gradients with respect tou, and (K + 1) v;
(one positive and K negatives).

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT
w(t-2)
% w(t-1)
x\ w(t+1)
w(t+2)

Skip-gram

wity ——»

INPUT PROJECTION OUTPUT

, T
L) = [P (we [{wer}, —m < j <m,j #0)
w(t-1) ‘ \ t=1

1 SUM

I

7 =g O
w(t+1) Vi — —— vV .

, "7 om , | .
w(t+2) —m<j<m,j#0

, L eXp(uwt ' _’t)
Continuous Bag of Words (CBOW) P (wt | {u’t+.7}) —

Fast Text: Subword Embeddings

e Similar to Skip-gram, but break words into n-grams withn =3 to 6
where: 3-grams:. <wh, whe, her, ere, re>
4-grams: <whe, wher, here, ere>
5-grams: <wher, where, here>
6-grams: <where, where>

e Replace u; - v; by Z Ug -V

gen-grams(w;)

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

Trained word embeddings available

e word2vec: https://code.google.com/archive/p/word2avec/

e GloVe: https://nlp.stanford.edu/projects/glove/

e FastText: https://fasttext.cc/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License v1.0 whose full text can be found at:
http://www.opendatacommons.org/licenses/pdd|/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
o Common Crawl (42B tokens, 19M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip

o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip

o [witter (28 tweets, 278 ?.r_wke'ws, 1.2M vocab, ur‘c&ased, Z'Sd, SOd. 100d, & 200d vectors, 1.42 GB d~;)'v~.'r‘n|oac,l; g|o‘-;e.?_'~f.-1'.'.er.27’3.z: D

e Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Easy to use!

gensim.models KeyedVectors

model KeyedVectors. load_word2vec_format('data/GoogleGoogleNews-vectors-negative300.bin', binary-True)

vector model['easy']

In [17): model.similarity('straightforward’', 'easy’)
Out[1l7]: 0.5717043285477517
In [18]): model.similarity('simple’, 'impossible')

Out[l8]: 0.29156160264633707

In [19]: model.most similar('simple’)

Out[19]: [('straightforward', 0.7460169196128845),
('Simple’, 0.7108174562454224),
('uncomplicated’, 0.6297484636306763),
('simplest’, 0.6171397566795349),

('easy’, 0.5990299582481384),

('fairly straightforward', 0.5893306732177734),
('deceptively simple’', 0.5743066072463989),
('simpler’, 0.5537199378013611),

('simplistic’, 0.5516539216041565),
('disarmingly simple', 0.5365327000617981)]

Evaluating word embeddings

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

e |et’s plug these word embeddings into a real NLP
system and see whether this improves performance

e Could take a long time but still the most important
evaluation metric

Intrinsic evaluation

e Evaluate on a specific/intermediate subtask

e [ast to compute

e Not clear if it really helps downstream tasks

(

| S—

| —

| —
o
\

!

[

ML model j

0.31
—0.28

!
|

) (Coi) (oo
dorI’t likTe

) (5oe) (159)
ot

this movie

Extrinsic evaluation

[ML model j

(55 (55 Ga) (zn8) (%)
A

I dont like this movie

A straightforward solution: given an input sentence L1, X2, ...,In
Instead of using a bag-of-words model, we can compute vec(z) = e(x1) +e(z2) + ...+ e(zy,)

And then train a logistic regression classifier on vec(x) as we did before!

There are much better ways to do this e.g., take word
embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

mmmmmm
tiger 7.35

tiger tlger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

Cosine similarity:

u,f-u]-

Cos(Ui, wj) = |
os(ui, u;) [|will2 X ||uj]|2

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size |[WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 71.5 71.0 53.6 34.7
SVD-LL 6B | 65.7 727 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 628 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-LL 42B| 740 764 74.1 58.3 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 75.4 59.4 455

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy test: a : a* :: b : b*

b* = arg max cos(e(w),e(a™) —e(a) + e(b))

semantic syntactic

Chicago:lllinois~Philadelphia: ? bad:worst & cool: ?

More examples at
http://download.tensorflow.org/data/questions-words.txt

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 53.2
HPCA 100 1.6B | 42 164 10.8
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B | 61 61 61
CBOW 300 1.6B | 16.1 526 36.1
vLBL 300 1.5B | 542 64.8 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B | 63 81 173
SVD-S 300 6B | 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW'™ 300 6B | 63.6 674 65.7
SG* 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 670 71.7
CBOW 1000 6B | 57.3 689 63.7
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 582 492
GloVe 300 42B | 81.9 69.3 75.0

Metric: accuracy

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

