

COS 484

Natural Language Processing

L17: Contextualized Representations and Pre-training

Spring 2023

Announcements

- We assigned each final project 1-2 mentors with initial feedback, and we encourage you to meet with your mentors in their office hours (feel free to go to other OHs too)
- Project poster session scheduled on May 5th 9:30am-11:30am @Friend Center upper atrium
- Computing: We can reimburse each team one month of Colab Pro for your computing needs (see Ed post!)

This lecture

- Contextualized word embeddings
- Pre-training and fine-tuning
- GPT, ELMo, BERT

- ELMo = Embeddings from Language **Mo**dels
- GPT = **G**enerative **P**re-**T**raining
 - BERT = **B**idirectional **E**ncoder **R**epresentations from **T**ransformers

(ERNIE, Grover, Big Bird, Kermit, RoBERTa, Rosita, ...)

Limitations of word2vec

One vector for each word type
 (Aka. "Static word embeddings")

$$v(\text{play}) = \begin{pmatrix} -0.224 \\ 0.130 \\ -0.290 \\ 0.276 \end{pmatrix}$$

- Complex characteristics of word use: syntax and semantics
- Polysemous words, e.g., bank, mouse

mouse¹: a mouse controlling a computer system in 1968.

mouse²: a quiet animal like a mouse

bank¹: ...a bank can hold the investments in a custodial account ...

bank²: ...as agriculture burgeons on the east bank, the river ...

Let's build a vector for each word conditioned on its context!

$$f: (w_1, w_2, ..., w_n) \longrightarrow \mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$$

Let's build a vector for each word conditioned on its context!

Sent #1: Chico Ruiz made a spectacular play on Alusik's grounder {}	v(play) = ?
Sent #2: Olivia De Havilland signed to do a Broadway play for Garson {}	$v(\mathbf{play}) = ?$
Sent #3: Kieffer was commended for his ability to hit in the clutch , as well as his all-round excellent play $\{\dots\}$	$v(\mathbf{play}) = ?$
Sent #4: {} they were actors who had been handed fat roles in a successful play {}	$v(\mathbf{play}) = ?$
Sent #5: Concepts play an important role in all aspects of cognition {}	v(play) = ?

Sent #1: Chico Ruiz made a spectacular play on Alusik's grounder {...}

Which of the following v(play) is expected to have the most similar vector to the first one?

- (A) Olivia De Havilland signed to do a Broadway play for Garson {...}
- (B) Kieffer was commended for his ability to hit in the clutch, as well as his all-round excellent play {...}
- (C) {...} they were actors who had been handed fat roles in a successful play {...}
- (D) Concepts play an important role in all aspects of cognition {...}
- (B) is correct.

	Source	Nearest Neighbors					
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer					
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended					
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round					
	grounder {}	excellent play.					
	Olivia De Havilland	{} they were actors who had been handed fat roles in					
	signed to do a Broadway	a successful play, and had talent enough to fill the roles					
	play for Garson $\{\dots\}$	competently, with nice understatement.					

ELMo: Embeddings from Language Models

(Released in 2018/2)

The key idea of ELMo:

- Train two stacked LSTM-based language models on a large corpus
- Use the hidden states of the LSTMs for each token to compute a vector representation of each word

http://jalammar.github.io/illustrated-bert/

How does ELMo work?

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}$$

Contextualized word embeddings =

The weighted average of input embeddings + all hidden representations

The weights γ^{task} , s_{j}^{task} are task-dependent and learned

How does ELMo work?

ELMo embedding of "stick" for this task in this context

ELMo: pre-training and the use

- Data: 10 epoches on 1B Word Benchmark (trained on single sentences)
- Training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs

Example use: A
BiLSTM model for
sentiment classification

(Peters et al, 2018): Deep contextualized word representations

ELMo: some take-aways

Q: Why use both forward and backward language models?

Because it is important to model both left and right context! Bidirectionality is very important in language understanding tasks!

Q: Why use the weighted average of different layers instead of just the top layer?

Because different layers are expected to encode different information.

first layer > second layer

second layer > first layer

Pre-training and Fine-tuning

What is pre-training / fine-tuning?

- "Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y
- Key idea: X is somewhat related to Y, so a model that can do X will have some good neural representations for Y as well
- ImageNet pre-training is huge in computer vision: learning generic visual features for recognizing objects

Can we find some task X that can be useful for a wide range of downstream tasks Y?

Feature-based vs fine-tuning approaches

 ELMo is a feature-based approach which only produces word embeddings that can be used as input representations of existing neural models

Feature-based vs fine-tuning approaches

- GPT / BERT (and most of following models) are fine-tuning approaches
 - Almost all model weights will be re-used, and only a small number of taskspecific will be added for downstream tasks

Generative Pre-Training (GPT)

(Released in 2018/6)

- Use a Transformer decoder (unidirectional; left-to-right) instead of LSTMs
- Use language modeling as a pre-training objective
- Trained on longer segments of text (512 BPE tokens), not just single sentences

Generative Pre-Training (GPT)

(Released in 2018/6)

• "Fine-tune" the entire set of model parameters on various downstream tasks

BERT: Bidirectional Encoder Representations from Transformers

(Released in 2018/10)

- It is a fine-tuning approach based on a deep bidirectional
 Transformer encoder instead of a Transformer decoder
- The key: learn representations based on bidirectional contexts

Example #1: we went to the river bank.

Example #2: I need to go to bank to make a deposit.

- Two new pre-training objectives:
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP) Later work shows that NSP hurts performance though...

Masked Language Modeling (MLM)

• Q: Why we can't do language modeling with bidirectional models?

Solution: Mask out k% of the input words, and then predict the masked words

Masked Language Modeling (MLM)

MLM: 80-10-10 corruption

For the 15% predicted words,

• 80% of the time, they replace it with [MASK] token

went to the store —— went to the [MASK]

• 10% of the time, they replace it with a random word in the vocabulary

went to the store —— went to the running

• 10% of the time, they keep it unchanged

went to the store —— went to the store

Why? Because [MASK] tokens are never seen during fine-tuning

(See Table 8 of the paper for an ablation study)

Next Sentence Prediction (NSP)

- Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, QA)
- NSP is designed to reduce the gap between pre-training and fine-tuning

```
[SEP]: a special token used
       [CLS]: a special token
                                             to separate two segments
       always at the beginning
Input = [CLS] the man went to [MASK] store [SEP]
         he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
         penguin [MASK] are flight ##less birds [SEP]
Label = NotNext
```

They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

BERT pre-training

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)

• Input embeddings:

BERT pre-training

- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters

 Same as OpenAl GPT
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

OpenAl GPT was trained on BooksCorpus only!

- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
- Max sequence size: 512 wordpiece tokens (roughly 256 and 256 for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k

BERT pre-training

Pre-training

- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

BERT fine-tuning

"Pretrain once, finetune many times."

sentence-level tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT fine-tuning

"Pretrain once, finetune many times."

token-level tasks

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Example: sentiment classification

$$P(y = k) = softmax_k(\mathbf{W}_o\mathbf{h}_{[CLS]})$$

$$\mathbf{W}_o \in \mathbb{R}^{C \times h}$$

All the parameters will be learned together (original BERT parameters + new classifier parameters)

Example: named entity recognition (NER)

$$P(y_i = k) = softmax_k(\mathbf{W}_o \mathbf{h}_i)$$
$$\mathbf{W}_o \in \mathbb{R}^{C \times h}$$

Experimental results: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Experimental results: SQuAD

System	D EM	ev F1	Te EM	st F1		Start Scores Linear Bi-GRU
Top Leaderboard System	s (Dec	10th,	2018)			A_Bi-GRU——Concat
Human	_	-	82.3	91.2		Sum
#1 Ensemble - nlnet	-	-	86.0	91.7		Self-Attention
#2 Ensemble - QANet	-	-	84.5	90.5		Attention Pre-Process
Publishe	ed					Self-Attention Embedding Input Bi-GRU
BiDAF+ELMo (Single)	-	85.6	-	85.8		Linear ReLU Layer
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5		Bi-Attention →
Ours					_	
BERT _{BASE} (Single)	80.8	88.5	-	-		Bi-GRU Bi-GRU
BERT _{LARGE} (Single)	84.1	90.9	-	-		→ Concat ← Concat ←
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	•	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8		CNN + Max Pool CNN + Max Pool
BERT _{LARGE} (Ens.+TriviaQA)						Embed Char Embed Char Embed Char Embed Context Text

Ablation study: pre-training tasks

Effect of Pre-training Task

- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

Ablation study: model sizes

Ну	perpar	ams		Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

The bigger, the better!

Ablation study: training efficiency

MLM takes slightly longer to converge because it only predicts 15% of tokens

What does BERT learn?

ELMo vs GPT vs BERT

Which of the following statements is INCORRECT?

- (A) BERT was trained on more data than ELMo
- (B) BERT builds on Transformer encoder, and GPT builds on Transformer decoder
- (C) ELMo requires different model architectures for different tasks
- (D) BERT was trained on data with longer contexts compared to GPT
- (D) is correct.