COS 484

Natural Language Processing

L | 3: Self-attention and Transformers

Spring 2024

(Some slides adapted from John Hewitt)

K_H

Attention
distribution

K_H

Attention
scores

Encoder
RNN

Recap: Attention

- Encoder hidden states: /1;", ..., 1"

0 . .
@ | Attention pie (n: # of words in source sentence)
: output T
7{3 A . .
<L > s - Decoder hidden state at time #: 7%
17 1T 1 - Attention scores:
e’ = [g(h"c,h®c), ..., g(he", h)] € R”
- Attention distribution:
©) o) o) o) o) O o) O o) O / / "
i lo| Jol| .|o| .o a' = softmax(e’) € R
ol o[o[|e o b e e e =Y e = e Y htdec (¢')
O O @) O @) @) @) O O (@) . .
T T T T T T T T T T ~ Weighted sum of encoder hidden states:
n
il a m’ entarté <START> he hit me with a a, = Z Cll-thfnc = Rh
N J =1

Y
Source sentence (input)

Combine a, and 1% to predict next word

Note that 427", ..., h,"" and h?¢¢ are hidden states from encoder and decoder RNNSs..

Recap: Attention

Encoder
hidden
state

 Attention addresses the “bottleneck” or fixed representation problem

* Attention learns the notion of alignment
*Which source words are more relevant to the current target word?”

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seg2seg-models-with-attention/

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup a in key-value store

Lookup table: a table of keys that map to
matches one of the keys,

values. The

returning its value.

keys values

a

b

-

query
d

vl
V2
V3

output
v4 % v4
v5

Attention: The matches to all keys
softly to a weight between 0 and 1. The
keys’ values are multipled by the weights
and summed.

keys values Weighted

Sum
k1l vl
k2 v2
query output
q k3 V3 ZH
k4 v4
k5 v5

(So far, we assume key = value)

Understanding attention

Do you understand attention now?

(A) | understand the concept of attention and what it is for
(B) | understand the concept + its mathematical formulations

(C) | am still struggling

Transformers

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
1lion@google.com

Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* T FLukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

(Vaswani et al., 2017)

Transformer encoder-decoder

Output
Probabilties e TJransformer encoder + Transformer decoder

| Softmax |

1 * First designed and experimented on NMT

| Linear |}

(s) .
e Can be viewed as a replacement for seg2seq +
m‘d_l J attention based on RNNSs

f | Add &'N
(,—w Add & Norm]N [-1 = r

Multi-Head

’ Feed I Attention

Forward g N x
L= 777

| Add &INorm Iﬂ

N ~—>| Add &INorm] Masked
Multi-Head Multi-Head

Attention pie
output T

scores distribution
>]"‘..
[}
1
s

Encoder Attention Attention

Attention Attention J
N
\
" v, 2
" o) o) o) o) o) 0 o) o) O o) s
POSltlonaI Positional 2 ol o |o| |o® lo| Jo| |o| o] .|®] .|® S
, = e |® e ‘|e 10 o[e[|lel |e[|® ®
Encoding Encoding o |o |o |e@ o] |o] |o] |of [|o] |o o
=
T T T T T Z
Embeddlng Embedding
il a m’ entarté <START> he hit me with a
I \)
Y
Inputs Outputs Source sentence (input)

(shifted right)

x

\
~—>| Add & Norm |

|
Feed
Forward

|

Nx | —(Add &INorm]

Multi-Head
Attention

Transformer encoder-decoder

Output
Probabilities

1

Softmax |}

1

Linear |

\

—
| Add & Norm h

Feed
Forward
| y

Add & Norm |

Attention

Positional
Encoding

@%

Input
Embeddmg

Inputs

[Multi-Head l

J_2 }r_)) Nx

I
| Add &INorm J—~

Masked
Multi-Head
Attention

_ <)
Positional
Encoding

Qutput
Embedding

I

OQutputs
(shifted right)

* Transformer encoder = a stack of encoder layers

 Transformer decoder = a stack of decoder layers

\d L
* .

Transformer encoder: BERT, RoBERTa, ELECTRA

éTransformer decoder: GPT-3, ChatGPT, Palm

E“Transformer encoder-decoder: 15, BART

* *
. .

 Key innovation: multi-head, self-attention

e Jransformers don’t have any recurrence structures!

h, =f(h_,,x) e R"

Issues with recurrent NNs

e |onger sequences can lead to vanishing gradients = It is hard to capture long-
distance information

Loss

e RNNs lack parallelizability
e Forward and backward passes have O(sequence length) unparallelizable operations
e (GPUs can perform a bunch of independent computations at once!
e |nhibits training on very large datasets

RNNs / LSTMs — seqg2seq — seg2seq + attention — attention only = Transformers!
Transformers have become a new building block to replace RNNs

Transformers: roadmap

Output
Probabilities

Softmax

I

| Linear |}

Add & Norm
Feed

)

| Forward \
J
R |
r f ~ [Add &INorm Je~
g L2 N Multi-Head
’ Feed I Attention
Forward) N x
g f =
| [[Add & Norm <=
N x I
~>| Add &INorm ! Nasked
Multi-Head Multi-Head
Attention Attention
(> J “)
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs OQutputs

(shifted right)

From attention to self-attention

From self-attention to multi-head self-attention
Feedforward layers

Positional encoding

Residual connections + layer normalization
Transformer encoder vs Transformer decoder

Reminder: we will ask you to
implement Transformer encoder-
decoder in A4!

Attention in a general form

e Assume that we have a set of values v, ..., Vv, & R% and a query vector q € R%

e Attention always involves the following steps:
e Computing the attention scores e = g(q,v;) € R"

e Taking softmax to get attention distribution a:
o = softmax(e) € R"

e Using attention distribution to take weighted sum of values:

n
aA — E Q;V,; € .Rd”
1=1

Attention in a general form

» A more general form: use a set of keys and values (k;, V), ..., (kK ,v), k. € R% v, € R%,
keys are used to compute the attention scores and values are used to compute the output vector

e Attention always involves the following steps:
» Computing the attention scores e = g(q,k;) € R"

e Taking softmax to get attention distribution a:
o = softmax(e) € R"

e Using attention distribution to take weighted sum of values:

n
a:E a;v; € R%
i=1

Self-attention

 |In NMT, query = decoder hidden state, keys =

: Layer. 5 § | Attention: Input - Input v
values = encoder hidden states

e Self-attention = attention from the sequence to itself ,The- The.
animal_ animal_
didn_ didn_
e Self-attention: let’s use each word in a sequence as . -
the query, and all the other words in the sequence as t t
keys and values. Cross_ Cross_
- the_ the
1 t t T street_ street_
self-attention because_ because_
ki 1 v ky q; v, k3 g3 v3 kr qr vy It_ it_
L7 " " N was_ was_
T 1 oo T too_ {o0_
self-attention tire tire
ks q3 v3 kr qr vr d_ d_

kl q1 V1 kz - U,
Wi Wz W3

The chef who food
https://jalammar.github.io/illustrated-transformer/

Self-attention

A self-attention layer maps a sequence of input vectors X, ..., X, € R% to a
sequence of n vectors: h;, ..., h, € R%

e The same abstraction as RNNs - used as a drop-in replacement for an RNN layer

= g(Wh,_, + Ux, + b) € R”

Self-attention:

where W) W) W) W) ¢ Rixd,

Self-attention

Step #1: Transform each input vector into three vectors: query, key, and value vectors

q;=xWleR% k=xW' eR® v,=xW'eR?

WQ =3 dyxd, WK = Rd1><dk WV =3 dXd,

Input

Embedding

Note that we use row vectors here;

Queries q1 Q2 we . "
It Is also common to write
q; = W%, € R%
Keys for X. = a column vector

Values

https://jalammar.github.io/illustrated-transformer/

Self-attention

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax

For each (;, compute attention scores and attention distribution:

-)

-k,
Q= Softmax(

o \/Tc

aka. “scaled dot product”
[t must be d, = d; in this case

Q. Why scaled dot product?

To avoid the dot product to become too large

1
Vi

for larger d,; scaling the dot product by

IS easier for optimization

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/4,

Softmax

)

https://jalammar.github.io/illustrated-transformer/

Self-attention

Step #3: Compute output for each input Input
as weighted sum of values

Embedding

n Queries d1 dz
d
h, = E Q; Vi & [R™ Keys
7=1 Values
(dv — dz)

Score qi® ki= Qi ®

Divide by 8 (Vdy.)

Softmax

Softmax
X

Sum h, h,

https://jalammar.github.io/illustrated-transformer/

Self-attention

What would be the output vector for
the word “Thinking” approximately?

(a) O.5V1 -+ O.5V2
(b) 0.594v1 + 0.46v5

(c) 0.88vy + 0.12vs

(d) 0.12vy 4 0.88vo

(c) is correct.

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (d).)

Softmax

Softmax
X

Value

Sum

Thinking

X1

V1

)
o]
[

V1

Machines

X2

Self-attention: matrix notations

X € R™*4 (n = input length)

Q=XWe K=xwEK v=xwV
WQ - Rd1><dq WK = Rledk WV c Rledv

nxd d, X n

Attention(Q, K,V) = softmax(Q - softmax()
d
V ds.

Q: What is this softmax operation?

https://jalammar.github.io/illustrated-transformer/

Multi-head attention

“The Beast with Many Heads”

e |tis better to use multiple attention functions instead of one!

e Each attention function (*head”) can focus on different positions.

ATTENTION HEAD #0 ATTENTION HEAD #1

N~
()

"
|.'. :,.lf 4
'Y 7\ S e e
N/ @
L TA" N a N
y |,_7_‘|

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

https://jalammar.github.io/illustrated-transformer/

Multi-head attention

“The Beast with Many Heads”

Finally, we just concatenate all the heads and apply an output projection matrix.

MultiHead(Q, K, V) = Concat(head, ..., head,) W
head; = Attention(XW2, XWX, xw})

B ——
S ——
S ——

e |n practice, we use a reduced dimension for each head.
WZ'Q c Rdlxdq7WiK c Rdlxdk7 Wiv c R% xdv
d, = dr, = d, = d/m d = hidden size, m = # of heads

WO e R4xd2 If we stack multiple layers, usually d; = do = d

e The total computational cost is similar to that of
single-head attention with full dimensionality.

https://jalammar.github.io/illustrated-transformer/

What does multi-head attention learn?

Layer:| 5 § Attention: Input - Input v

The_
animal_
didn_

street_
because_
it_

was_
too_

d

The_

animal_
didn_

street_
because
it_

was_
too_

tire

Layer: 5 5| Attention:

Cross_
the_
street_
because_

Input - Input v

The_
animal_
didn_

street
because

it

wadas

too
tire

https://github.com/jessevig/bertviz

Missing piece: positional encoding

e Unlike RNNs, self-attention doesn’t build in order information, we need to encode the order
of the sentence in our keys, queries, and values

e Solution: Add “positional encoding” to the input embeddings: p; € Réfori=1,2,....n

Xi < Xi + Pi

e Sinusoidal position encoding: sine and cosine functions of different frequencies:

" . .

(sin(i/100002°1/dY
cos(i/10000%*1/4)

e 2k
_—

—

Pi

d
sin(i/10000%2/%)

Z*Qd
\cos(i/10000 2/)/

Dimension

Index in the sequence

* Pros: Periodicity + can extrapolate to longer sequences
e Cons: Not learnable

Missing piece: positional encoding

» Learned absolute position encoding: let all p; be learnable parameters

e P e R for L = max sequence length

* Pros: each position gets to be learned to fit the data

e Cons: can’t extrapolate to indices outside of max sequence length L

e Most systems use this!

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
POSITION EMBEDDING

Self-Attention with Relative Position Representations

Peter Shaw
Google
petershaw @google.com

Jakob Uszkoreit
Google Brain
usz@google.com

Ashish Vaswani
Google Brain
avaswani @google.com

Jianlin Su
Zhuiyi Technology Co., Ltd.
Shenzhen
bojonesu@wezhuiyi.com

Ahmed Murtadha
Zhuiyi Technology Co., Ltd.
Shenzhen
mengjiayi@wezhuiyi.com

Yu Lu

Zhuiyi Technology Co., Ltd.

Shenzhen

julianlu@wezhuiyi.com

Bo Wen

Zhuiyi Technology Co., Ltd.

Shenzhen
brucewen@wezhuiyi.com

Shengfeng Pan
Zhuiyi Technology Co., Ltd.
Shenzhen
nickpan@wezhuiyi.com

Yunfeng Liu
Zhuiyi Technology Co., Ltd.
Shenzhen
glenliu@wezhuiyi.com

Adding nonlinearities

e There are no elementwise nonlinearities in self-attention; stacking
more self-attention layers just re-averages value vectors

e Simple fix: add a feed-forward network to FF FE FF
post-process each output vector I f f

FFN(x;) = ReLU(x; W1 + b1)W2 + bs - FF FF
T T T
W, € RA*4s s by € RE#s self-attention
W, € R¥1%Xd p, € RY w1 w; W
The chef who

In practice, they use dyr = 4d

food

Transformers vs LSTMs

Which of the following statements is correct?

(@) Transformers have less operations compared to LSTMs

(b) Transformers are easier to parallelize compared to LSTMs

(c) Transformers have less parameters compared to LSTMs

(d) Transformers are better at capturing positional information than LSTMs

(b) is correct.

Transformer encoder: let’s put things together

From the bottom to the top:

e |nput embedding

e Positional encoding

e A stack of Transformer encoder layers

Add & Norm

Feed
Forward

Add & Norm
Multi-Head
Attention

Positional
Encoding

Transformer encoder is a stack of /V layers, which
consists of two sub-layers:

e Multi-head attention layer
e Feed-forward layer

O
Input

Inputs

c R%

e RY —— h,,...,h

Xl,...,Xn n

Residual connection & layer normalization

Add & Norm: LayerNorm(z + Sublayer(z))

Residual connections (He et al., 2016)

Instead of X = Layer(X (i_l)) (1 represents the layer)

y(@-1)

Layer - X

We let X = XD 4 Layer(X(i_l)), so we only need to learn “the
residual” from the previous layer

b G Layer ?—* X®

Gradient through the residual connection is 1 - good for propagating information through layers

Residual connection & layer normalization

Add & Norm: LayerNorm(z + Sublayer(z))

Layer normalization (Ba et al., 2016) helps train model faster

ldea: normalize the hidden vector values to unit mean and stand deviation within each layer

[advanced]

w R
Yy = e R v, B € R? are learnable parameters
v/ Var[z| + €

Transformer decoder

Qutput

Probatbilities From the bottom to the top:
S) e Qutput embedding
Untear) Positional encoding
[(Adaz Norm) | * A stack of Transformer decoder layers
| e \ Cross-attention e Linear + softmax
V| e / between source
| %i-‘r—tyead | and target sequence Transformer decoder is a stack of /V layers, which
777 || W™ consists of three sub-layers:
AJd & Nom Je~ | e Masked multi-head attention
Masked Self-attention
eton | [T withi * Multi-head cross-attention
ention within target
L). sequence * Feed-forward layer
Postions (W/ Add & Norm between sub-layers)
ncoding
[Outpufi |
Embedding

I

Outputs

