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The sequence-to-sequence model (seq2seq)

Image:  https://d2l.ai/chapter_recurrent-modern/seq2seq.html

It is called an encoder-decoder architecture


• The encoder is an RNN to read the input sequence (source language)


• The decoder is another RNN to generate output word by word  (target language)

Encoding of 
source sentence = 
initial hidden state 
for decoder RNN

A special symbol <bos> before 
generating the first word

https://d2l.ai/chapter_recurrent-modern/seq2seq.html
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Seq2seq: Decoder
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• A conditional language model



Seq2seq: Decoder
• A conditional language model

• It is a language model because the decoder is predicting the next word 
of the target sentence 

• Conditional because the predictions are also conditioned on the source 
sentence through henc

• NMT directly calculates P(w(t) ∣ w(s))
• Denote w(t) = y1, …, yT

P(w(t) ∣ w(s)) = P(y1 ∣ w(s))P(y2 ∣ y1, w(s))P(y3 ∣ y1, y2, w(s))…P(yT ∣ y1, …, yT−1, w(s))



Understanding seq2seq

Which of the following is correct?


• (A) We can use bidirectional RNNs for both encoder and decoder


• (B) The decoder has more parameters because of the output matrix 


• (C) The encoder and decoder have separate word embeddings


• (D) The encoder and decoder’s parameters are optimized together

Wo

Both (C) and (D) are correct.



Understanding seq2seq

Encoder RNN:  
• word embeddings  for source language

• RNN parameters, e.g.,  for simple RNNs and 4x parameters for LSTMs

• Encoder RNN can be bidirectional!

E(s)

{W, U, b}

Decoder RNN:  
• word embeddings  for target language

• RNN parameters, e.g.,  for simple RNNs and 4x parameters for LSTMs

• Output embedding matrix  = can be tied with 

• Decoder RNN has to be unidirectional (left to right)!

E(t)

{W, U, b}
Wo E(t)



Training seq2seq models

• Training data: parallel corpus {( )}w(s)
i , w(t)

i

English: hello world .

12M sentence pairs
French:  bonjour le monde .

• Minimize cross-entropy loss:

T

∑
t=1

− log P(yt |y1, . . . , yt−1, w(s))

(denote )w(t) = y1, …, yT

• Back-propagate gradients through both encoder and decoder



Training seq2seq models

<bos>



Decoding seq2seq models

• Greedy decoding
= Compute argmax at 
every step of decoder 
to generate word

• Exhaustive search is very expensive:   - we even 

don’t know what T is 

arg max
y1,...,yT

P(y1, . . . , yT |w(s))

<bos>



Decoding with beam search

• At every step, keep track of the k most probable partial translations (hypotheses)

• Score of each hypothesis = log probability of sequence so far





• Not guaranteed to be optimal


• Works better than greedy decoding in practice

j

∑
t=1

log P(yt |y1, . . . , yt−1, w(s))



Beam search
<latexit sha1_base64="3yhpknHyzI8zM/qUHWvLESFSquo="></latexit>

tX

i=1

logP (yi | y1, . . . , yi�1,w
(s))

<bos>



Beam search: Backtrack

<bos>



Beam search: details

‣ Different hypotheses may produce  token at different time steps


‣ When a hypothesis produces , stop expanding it and place it aside


‣ Continue beam search until:


‣ All  hypotheses produce  OR


‣ Hit max decoding limit T


‣ Select top hypotheses using the normalized likelihood score





‣ Otherwise shorter hypotheses have higher scores

⟨eos⟩

⟨eos⟩

k ⟨eos⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, w(s))



NMT vs SMT

Pros: 

• Better performance (more fluent, better use of context, better use of phrase similarities)


• A single neural network to be optimized end-to-end (no individual subcomponents)


• Less human engineering effort - same method for all language pairs

Cons: 

• NMT is less interpretable 

• NMT is difficult to control



NMT: the first big success story of NLP deep learning

• 2014: First seq2seq paper published

• 2016: Google Translate switches from SMT to NMT - and by 2018 everyone has

• SMT systems, built by hundreds of engineers over many years, outperformed by 
NMT systems trained by a small group of engineers in a few months



Sequence-to-sequence is versatile

• Sequence-to-sequence is useful for more than just MT


• Many NLP tasks can be phrased as sequence-to-sequence


• Summarization (long text  short text)


• Dialogue (previous utterances  next utterance)


• Parsing (input text  output parse as sequence)


• Code generation (natural language  Python code)

→

→

→

→



Sequence-to-sequence is versatile

‣ Summarization

See et al., 2017: Get To The Point: Summarization with Pointer-Generator Networks



Sequence-to-sequence is versatile

‣ Dialogue

Vinyals and Le 2015: A Neuarl Conversational Model



Sequence-to-sequence is versatile

‣ Parsing

Vinyals et al., 2015: Grammar as a Foreign Language

‣ Semantic parsing / code generation

Dong and Lapata, 2016: Language to Logical Form with Neural Attention



Subword tokenization
• So far, we have been always using words as the basic units

• e.g., there is a pre-defined vocabulary V, and each word  has a word embeddingw ∈ V

• How to represent all words even those we haven’t seen in the training data?
• A common solution: replace unknown words with a special <UNK> token
• It is not a great solution for MT when you have a lot of unknown tokens



Byte pair encoding (BPE)
• Key idea: use subword units! Rare and unknown words are encoded as sequences of subword units

• BPE = byte pair encoding (BPE) is a simple data compression technique (Gage, 1994)

• It was first introduced in NMT by (Sennirch et al., 2016) and achieved huge success

• Modern neural networks all build on subword units - besides BPE, there are also unigram and 
wordpiece tokenization algorithms



Byte pair encoding (BPE)

https://lena-voita.github.io/nlp_course/
seq2seq_and_attention.html#bpe



Sequence-to-sequence: the bottleneck

‣ A single encoding vector, , needs to capture all the information about source sentence


‣ Longer sequences can lead to vanishing gradients

henc

bottleneck



Attention

‣ Attention provides a solution to the bottleneck problem


‣ Key idea: At each time step during decoding, focus on a particular part 
of source sentence


‣ This depends on the decoder’s current hidden state  (i.e. an idea of 
what you are trying to decode)


‣ Usually implemented as a probability distribution over the hidden states 
of the encoder (  )

hdec
t

henc
i
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Seq2seq: Decoder
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• A conditional language model
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Seq2seq with attention

<bos>
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Computing attention

‣ Encoder hidden states: 


‣ Decoder hidden state at time : 


‣ First, get attention scores for this time step of decoder (we’ll define  
soon): 
                                 


‣ Obtain the attention distribution using softmax: 
                                        


‣ Compute weighted sum of encoder hidden states: 

                                        


‣ Finally, concatenate with decoder state and pass on to output layer:  
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n

t hdec
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g

et = [g(henc
1 , hdec

t ), . . . , g(henc
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αt = softmax (et) ∈ ℝn
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n

∑
i=1
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i h
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(n: # of words in source sentence)

<bos>



Attention

Input-feeding



Computing attention

(credits: Jay Alammar)
https://jalammar.github.io/visualizing-neural-machine-

translation-mechanics-of-seq2seq-models-with-attention/



(credits: Jay Alammar)
https://jalammar.github.io/visualizing-neural-machine-

translation-mechanics-of-seq2seq-models-with-attention/



Types of attention

‣ Assume encoder hidden states  and a decoder hidden state 


1. Dot-product attention (assumes equal dimensions for  and ): 
                    


2. Multiplicative attention: 
             , where  is a weight matrix (learned)


3. Additive attention: 
                   

where  are weight matrices (learned) and  is a weight vector (learned)
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Assuming we use dot product attention, which input word 
will have the highest attention value at current time step?


A) the

B) cat

C) sat

the

h3h1 h2

cat sat
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hdec
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Dot-product 
attention: 
g(henc

i , hdec
t ) = hdec

t ⋅ henc
i

the: -0.05 + 0.02

cat: -0.02 + 0.08

sat:  0.01 + 0.04    


The answer is (B)



(Luong et al., 2015)

Attention improves translation



(credits: Jay Alammar)

Visualizing attention


