

L6: Sequence Models

Spring 2025

Natural Language Processing

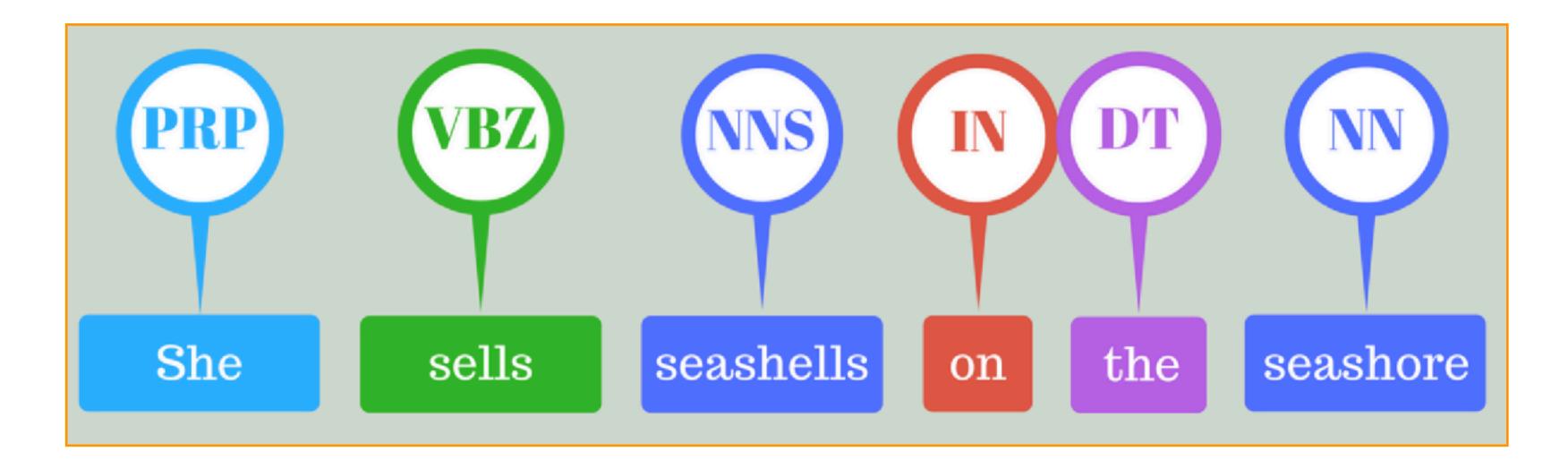
COS 484

Lecture plan

- Today:
 - recognition
 - Hidden markov models
 - Viterbi algorithm
- Next lecture
 - Maximum entropy markov model (MEMMs)
 - Conditional random fields (CRFs)

Sequence tagging NLP tasks: part-of-speech tagging, named entity

Why model sequences?



Part-of-speech (POS) tagging

PRP: Personal pronoun

VBZ: Verb, 3rd person singular present

NN: singular noun NNS: plural noun

IN: preposition or subordinating conjunction DT: determiner

Why model sequences?

Person	р	Loc	1	Org	0	E
Barack						
Januar						
was the	first	Afric	can A	merio	an 🕯	to
United	State	es Se	nato	r 💌 fro	om	Illin

Image: https://www.analyticsvidhya.com/blog/2021/11/a-beginners-introduction-to-ner-named-entity-recognition/

Named Entity recognition

Why model sequences?

Mary loaded the truck with hay at the depot on Friday.

load.01 A0 loader A1 bearer A2 cargo A3 instrument

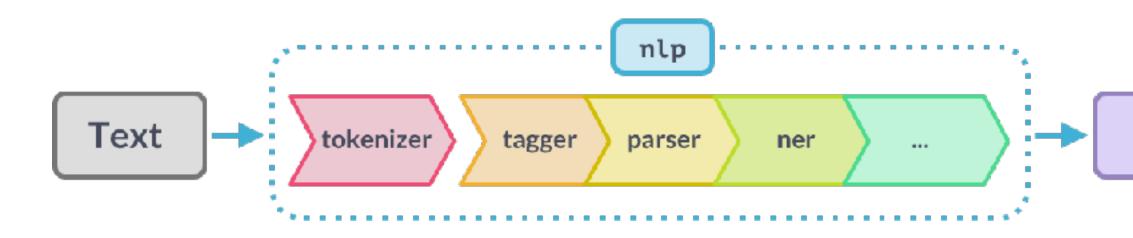
Semantic role labeling

https://devopedia.org/semantic-role-labelling

AM-LOC AM-TMP AM-PRP AM-MNR

. . .

Mary loaded hay onto the truck at the depot on Friday.



NAME	COMPONENT	CREAT	ES	DESCRIPTION
tokenizer	Tokenizer ≣	Doc		Segment text into tokens.
tagger	Tagger ≣	Token	.tag	Assign part-o speech tags.
parser	DependencyParser	Token Doc.s		Assign dependency labels.
ner	EntityRecognizer	Token	nts, .ent_iob,	Detect and la named entitie

https://spacy.io/usage/processing-pipelines

NLP pipelines

Doc

Ν

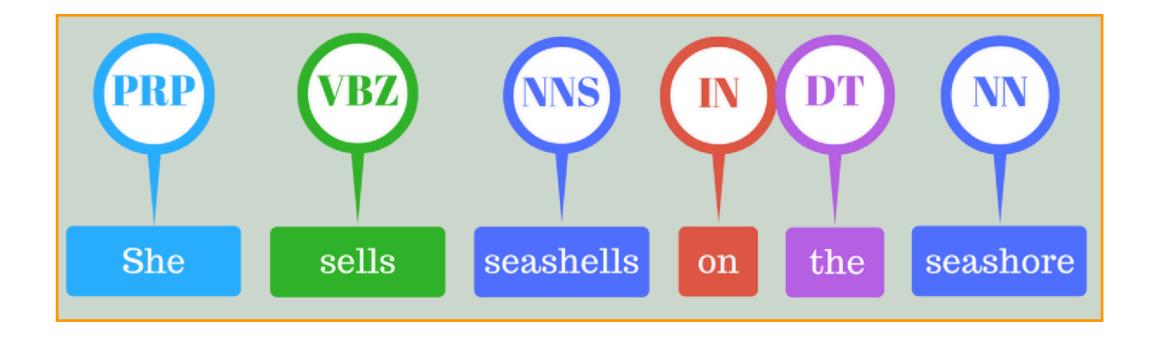
-of-

abel ies.



https://stanfordnlp.github.io/CoreNLP/pipeline.html

What are part of speech tags?



- 1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN
 - 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. The/DT old/NN man/VBP the/DT boat/NN

- Word classes or syntactic categories
 - Reveal useful information about a word (and its neighbors!)

- Different words have different functions
- Can be roughly divided into two classes
- **Closed class:** fixed membership, **function words**
 - e.g. prepositions (*in, on, of*), determiners (*the, a*)
- **Open class**: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives, adverbs

Parts of Speech

How many part of speech tags do you think English has?

A) < 10 B) 10 - 20 C) 20 - 40 D) > 40

The answer is (D) - well, depends on definitions!

Parts of Speech

Penn treebank part-of-speech tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), $\}, >$
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	. ! ?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Other corpora: Brown, Switchboard

45 tags (*Marcus et al., 1993*)

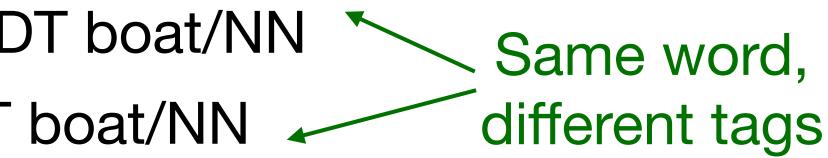
based on Wall Street Journal (WSJ)

Part of speech tagging

- Tag each word in a sentence with its part of speech
- Disambiguation task: each word might have different functions in different contexts
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VBP the/DT boat/NN

earnings growth took a **back/JJ** seat a small building in the **back/NN** a clear majority of senators **back/VBP** the bill Dave began to **back/VB** toward the door enable the country to buy **back/RP** about debt I was twenty-one **back/RB** then

> JJ: adjective, NN: single or mass noun, VBP: Verb, non-3rd person singular present VB: Verb, base form, RP: particle, RB: adverb



Some words have many functions!

Part of speech tagging

- Tag each word in a sentence with its part of speech
- Disambiguation task: each word might have different senses/functions

Types:		WS	SJ	Bro	wn	
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)	
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)	
Tokens:						
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)	
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)	

- Types = distinct words in the corpus •
- Tokens = all words in the corpus (can be repeated) •

Unambiguous types: Jane \rightarrow NNP, hesitantly $\rightarrow RB$

A simple baseline

- training set. (e.g. man/NN)
- How accurate do you think this baseline would be at tagging words?

(A) <50% (B) 50-75% (C) 75-90% (D) >90%

Most frequent class: Assign each word to the class it occurred most in the

A simple baseline

- Most frequent class: Assign each word to the class it occurred most in the training set. (e.g. man/NN)
- How accurate do you think this baseline would be at tagging words?
 - (A) <50% (B) 50-75% (C) 75-90% (D) >90%

- The answer is (D)
- This baseline accurately tags 92.34% of word
 - tokens on Wall Street Journal (WSJ)!
- State of the art ~ 97% (also human-level acc)
- Average English sentence ~14 words
 - Sentence level accuracies: with 0.9214 per word is
- POS tagging not solved yet!

31% vs 0.9714 per word is 65%

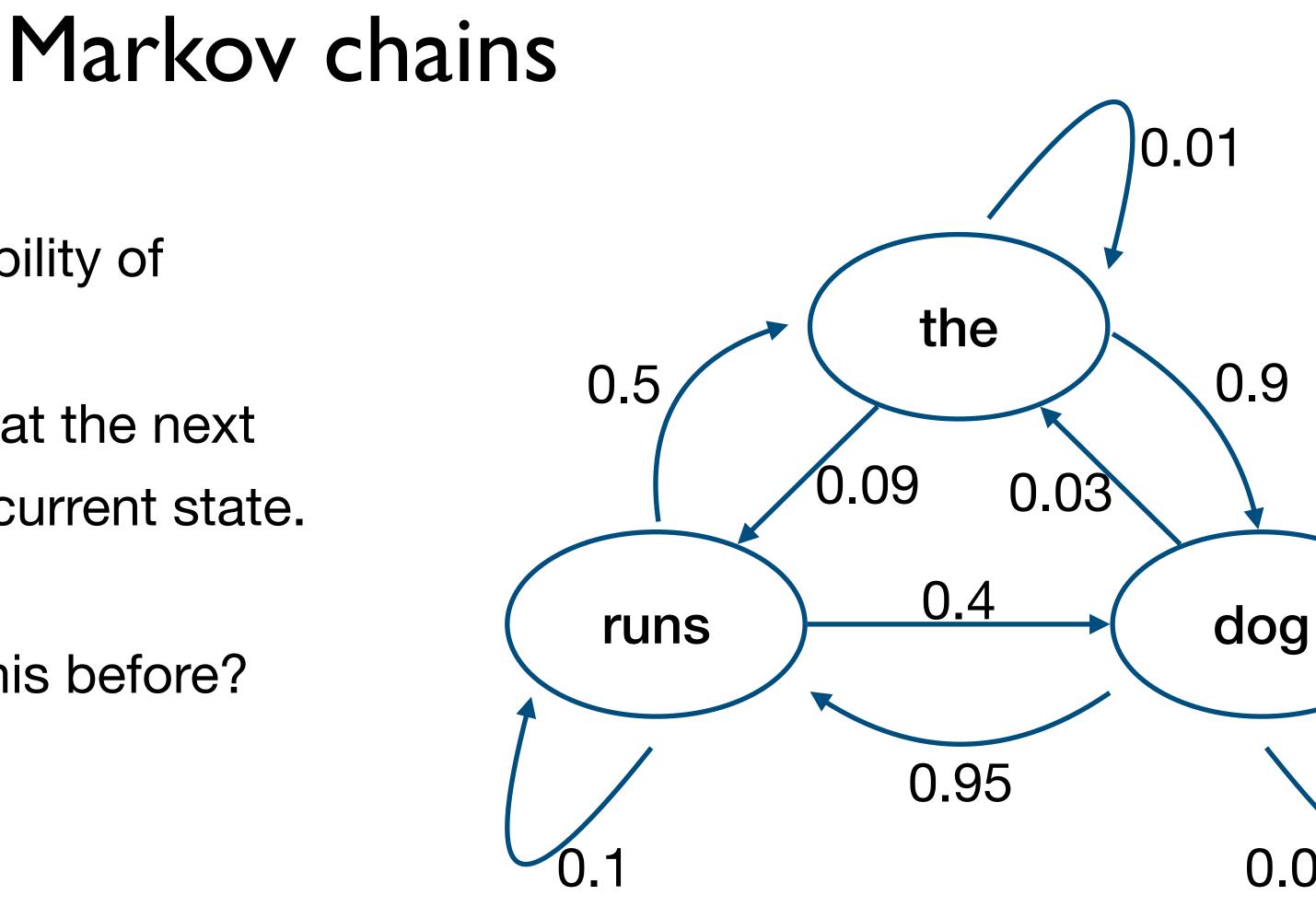
How can we do better?

- The function (or POS) of a word depends on its context
 - The/DT old/JJ man/NN bought/VBP the/DT boat/NN
 - The/DT old/NN man/VBP the/DT boat/NN
- Certain POS combinations are extremely unlikely
 - *<JJ, DT>* ("good the") or *<DT, IN>* ("the in")
- Better to make decisions on entire sentences instead of individual words

Hidden Markov Models

- Want to model the probability of difference sequences.
- Making an assumption that the next "state" only depends on current state.

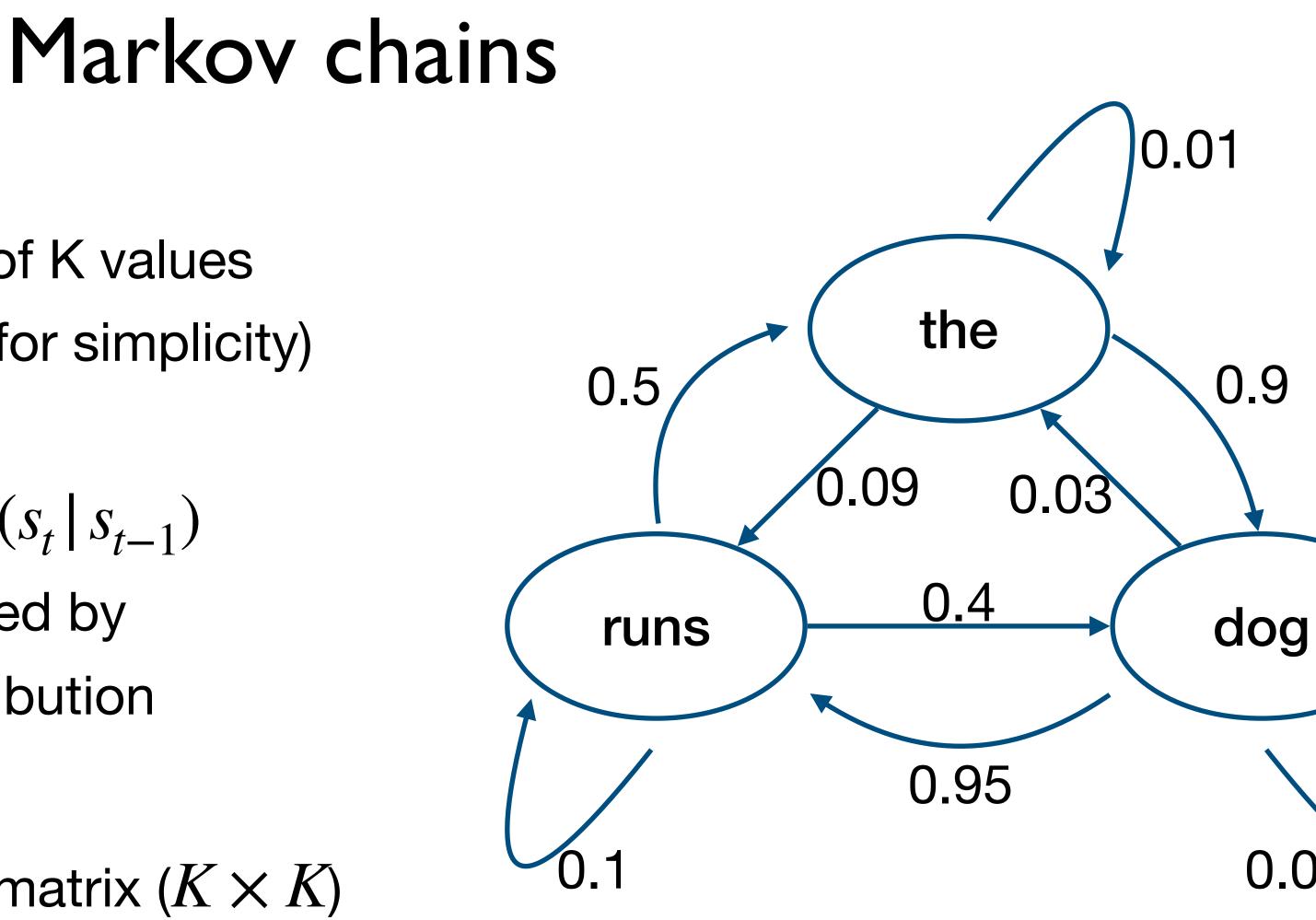
Where have we seen this before?



- Each state can take one of K values (can assume {1, 2, ..., K} for simplicity)
- Markov assumption:

 $P(s_t | s_1, s_2, ..., s_{t-1}) \approx P(s_t | s_{t-1})$

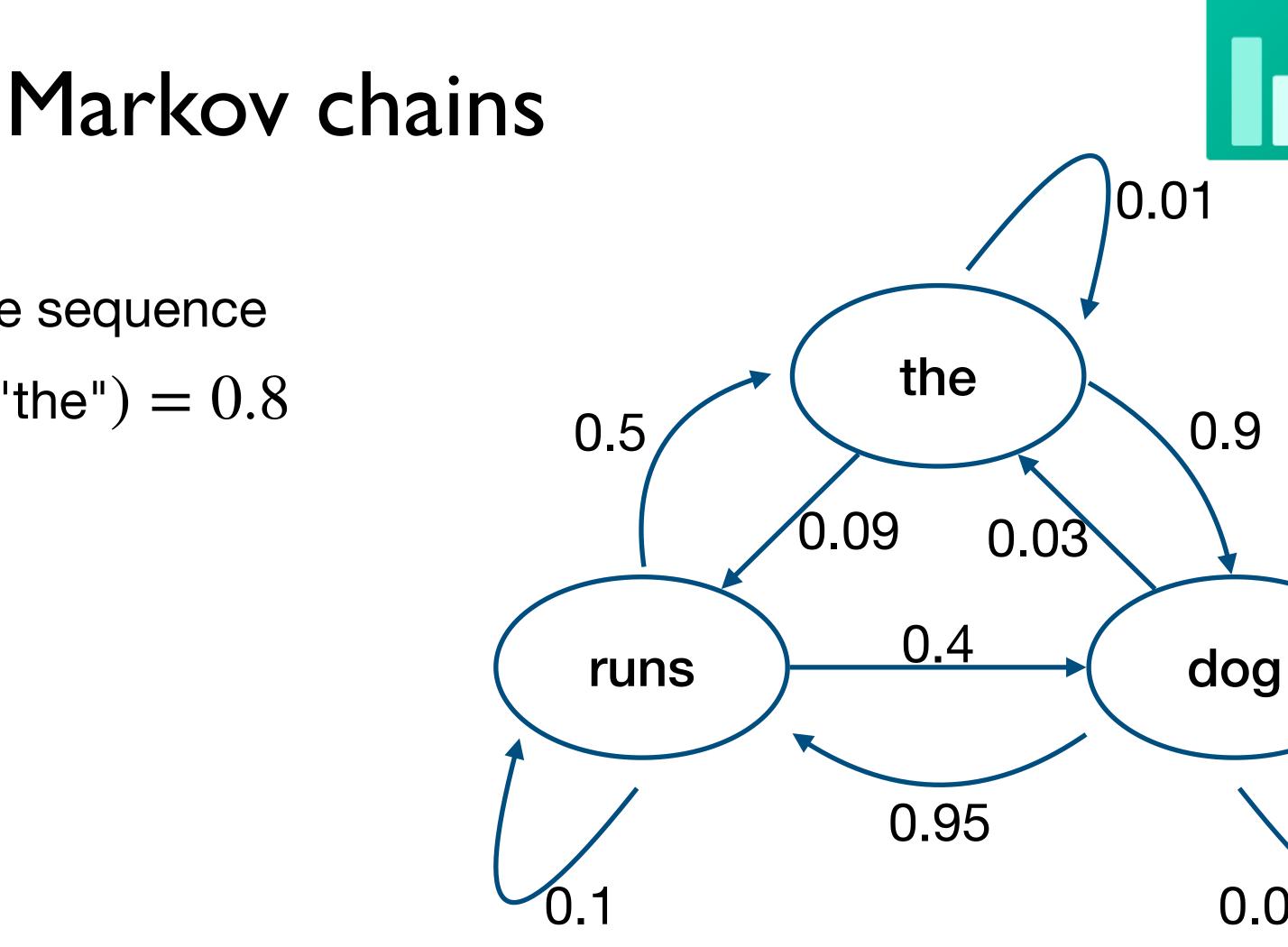
- A Markov chain is specified by
 - Initial probability distribution $\pi(s), \forall s \in \{1, \dots, K\}$
 - Transition probability matrix $(K \times K)$



What is the probability of the sequence "the dog runs"? Assume π ("the") = 0.8

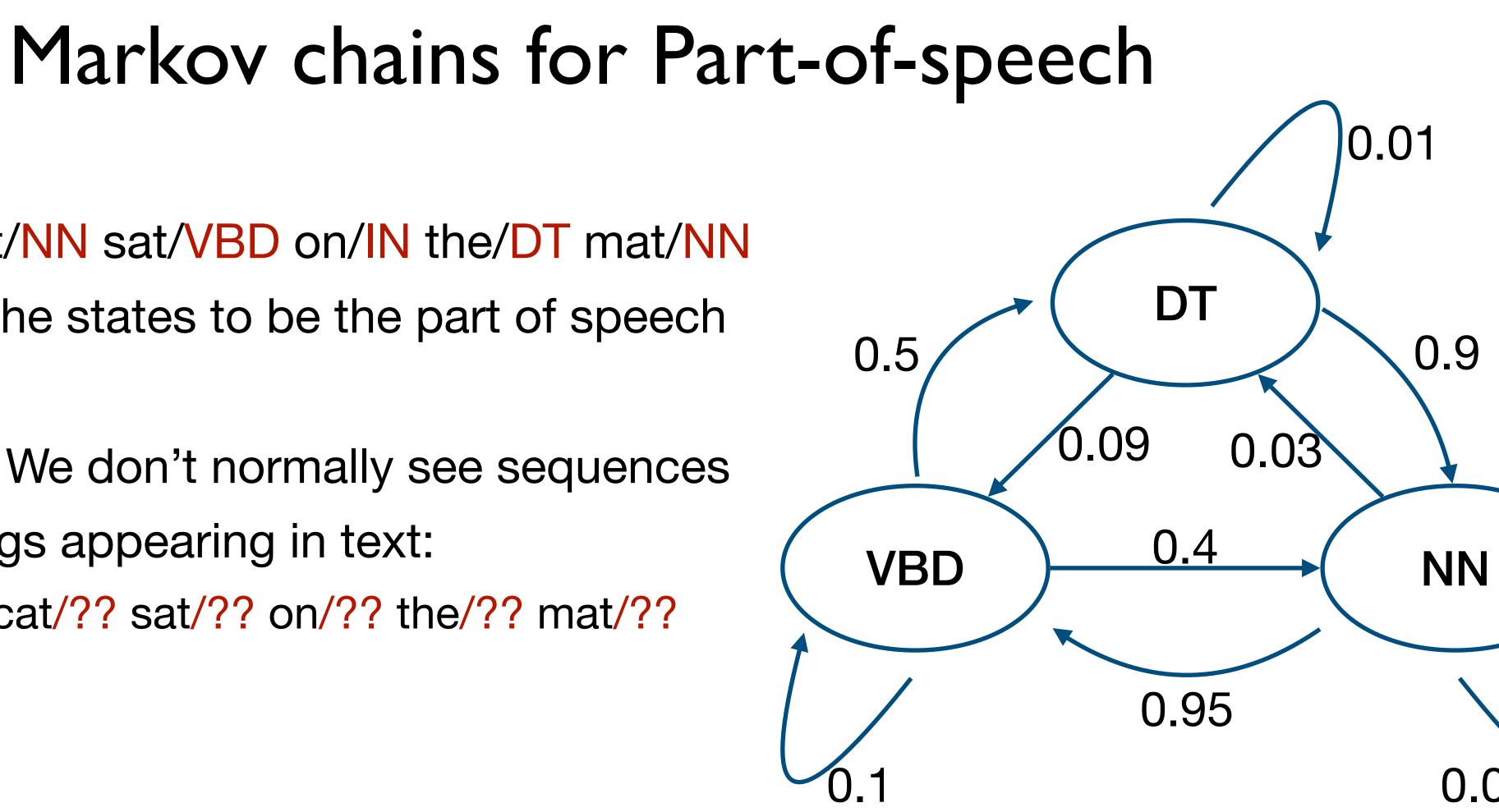
(A) 0.8 x 0.9 x 0.95 (B) 0.8 x 0.99 x 0.98 (C) 0.2 x 0.9 x 0.95 (D) 0.2 x 0.01 x 0.02 x 0.1

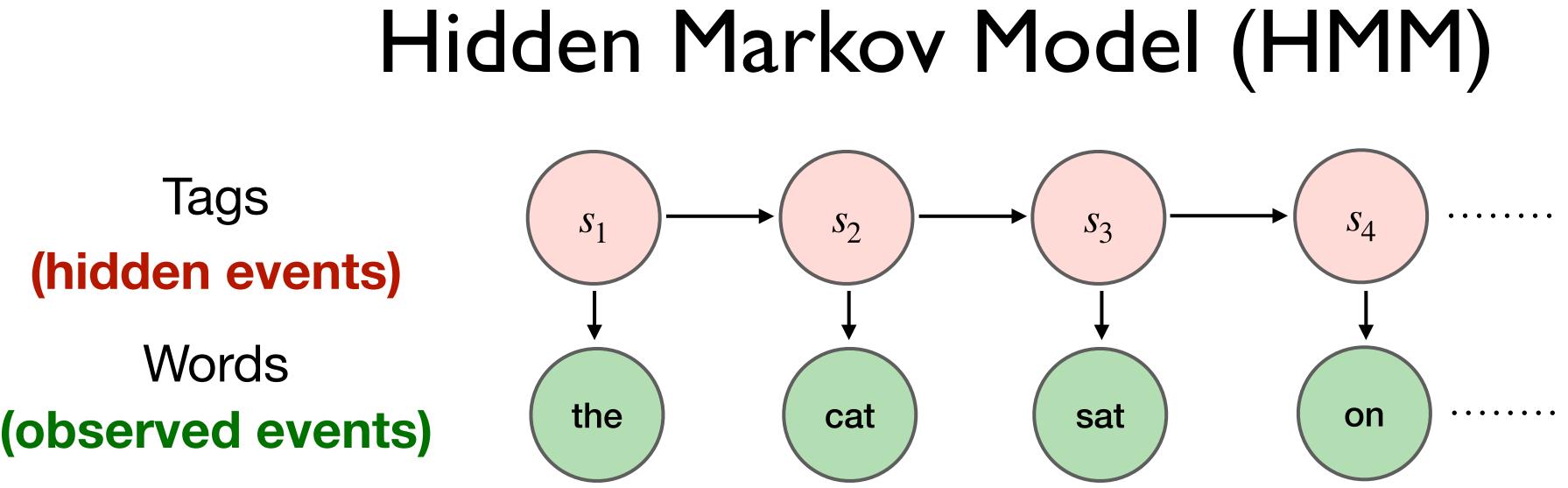
The answer is (A)



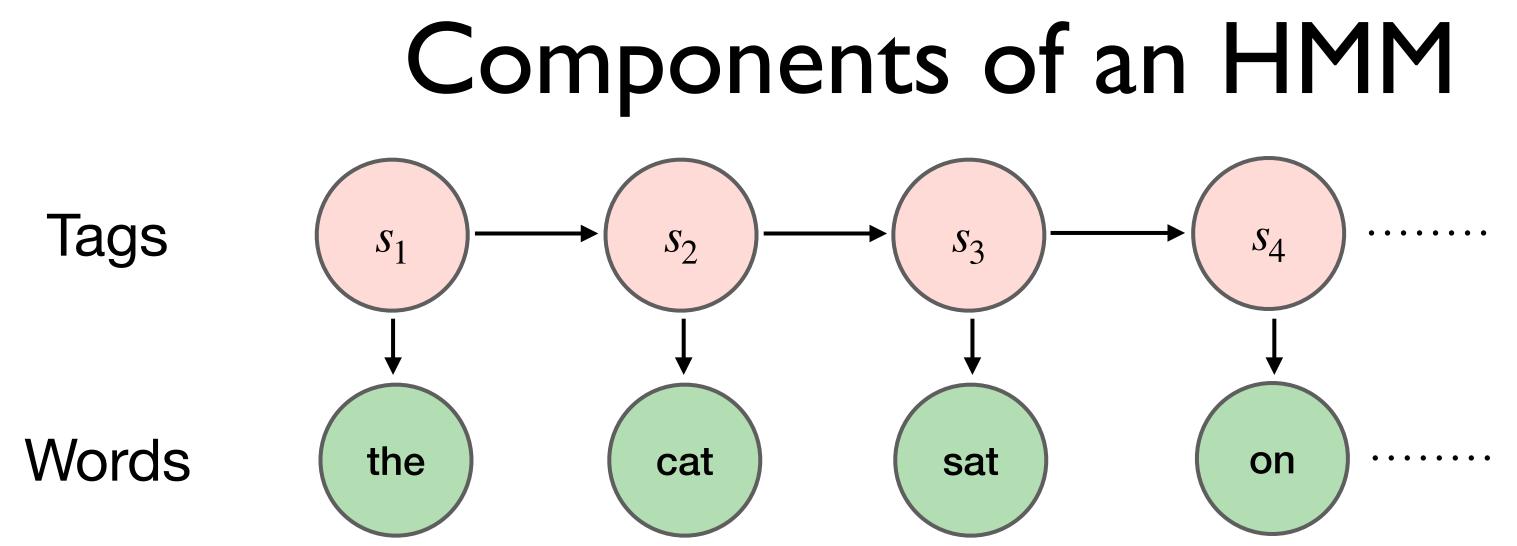
The/DT cat/NN sat/VBD on/IN the/DT mat/NN

- We want the states to be the part of speech tags.
- **Problem**: We don't normally see sequences of POS tags appearing in text: The/?? cat/?? sat/?? on/?? the/?? mat/??



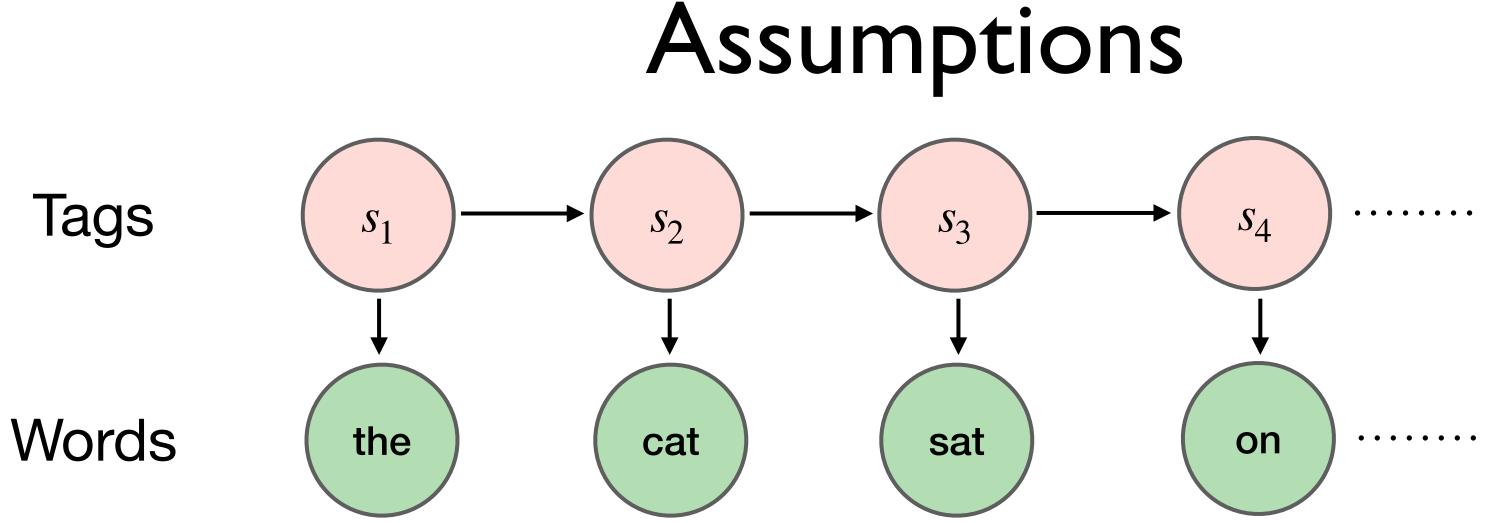


- We don't normally see sequences of POS tags in text
- However, we do observe the words!
- The HMM allows us to *jointly reason* over both **hidden** and **observed** events.
 - Assume that each position has a tag that generates a word



- 2. Initial state probability distribution $\pi(s_1)$
- 3. Transition probabilities $P(s_{t+1} | s_t)$
- 4. Emission probabilities $P(o_t | s_t)$

1. Set of states S = {1, 2, ..., K} and set of observations $O = \{o_1, \ldots, o_n\}$ $o_i \in V$

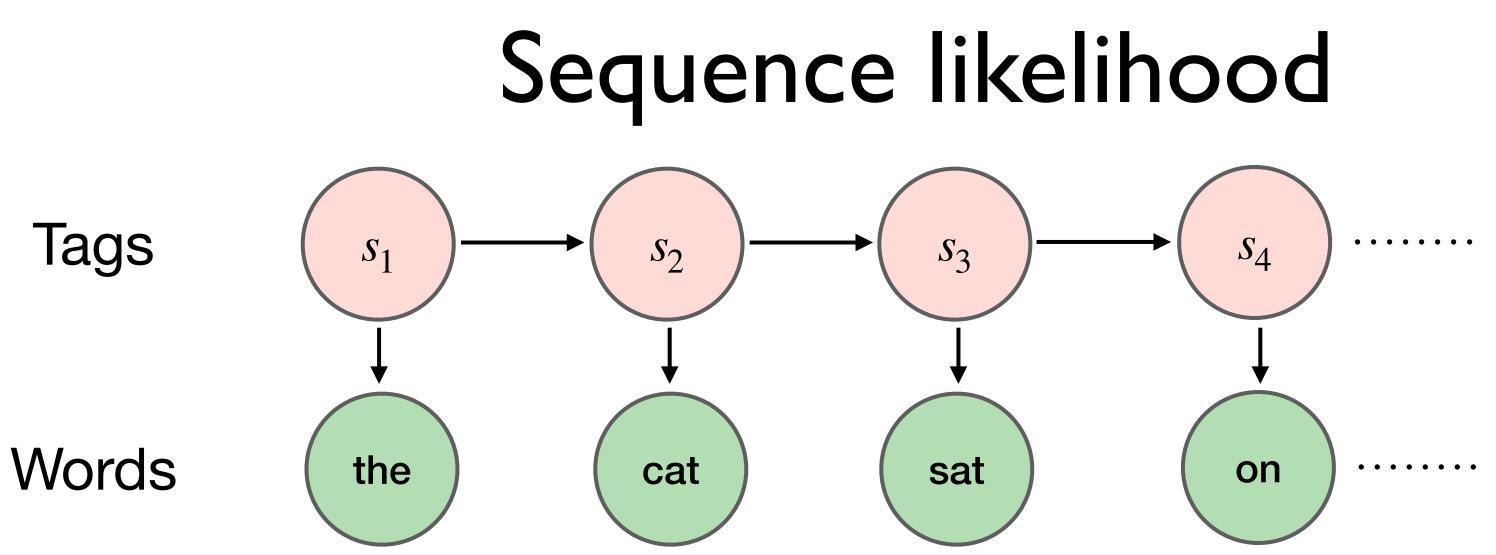


1. Markov assumption:

 $P(s_t | s_1, \ldots, s_{t-1}) \approx P(s_t | s_{t-1})$

2. Output independence:

 $P(o_t | s_1, \ldots, s_t) \approx P(o_t | s_t)$



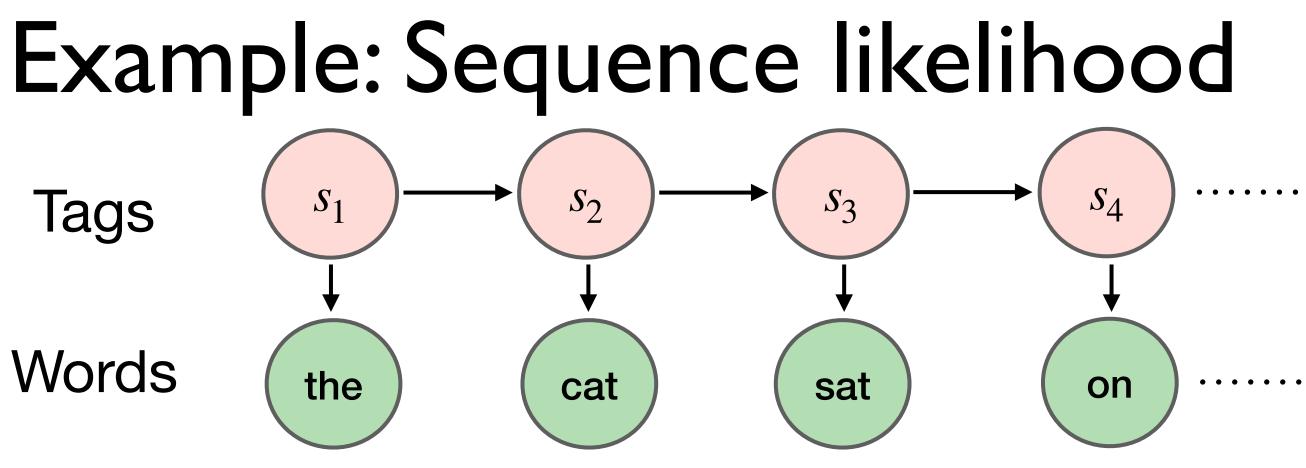
$$P(S, O) = P(s_1, s_2, \dots, s_n, o_1, o_2, \dots, o_n)$$

= $\pi(s_1)p(o_1 \mid s_1) \prod_{i=2}^n P(s_i \mid s_{i-1})P(o_i \mid s_i)$
transition emission
probability probability

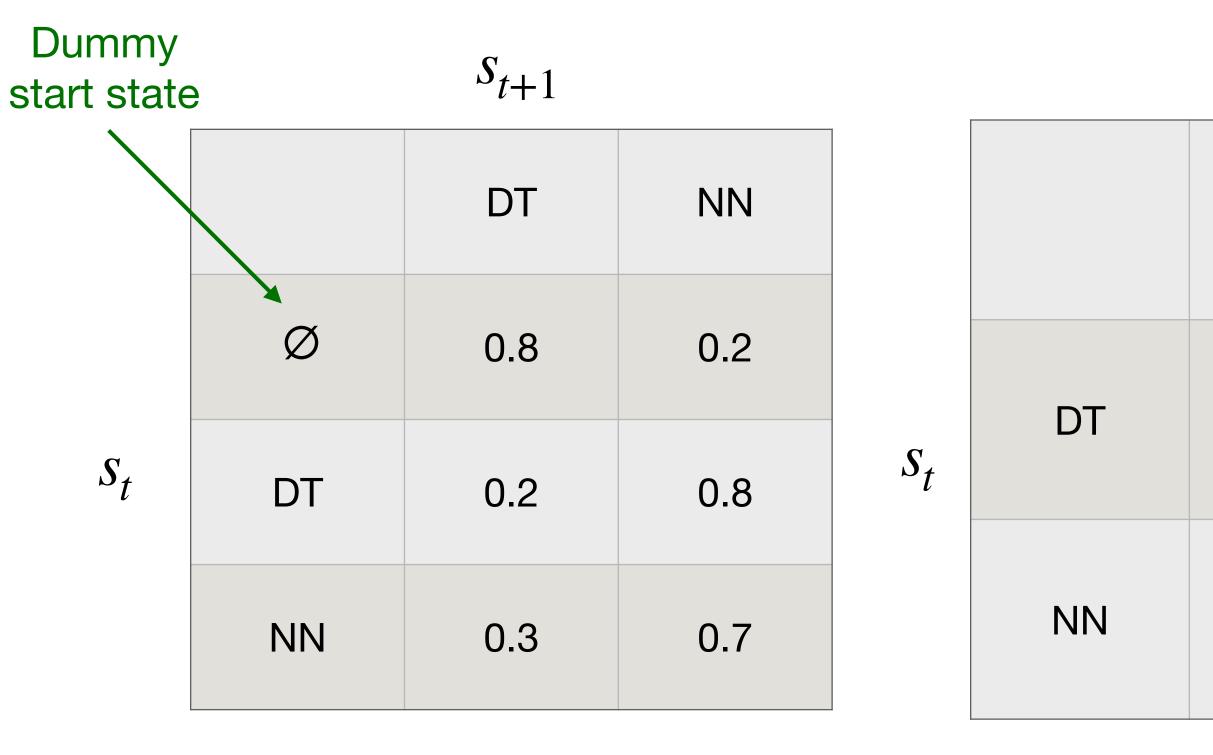
If we add a dummy state $s_0 = \emptyset$ at the beginning,

$$P(S, O) = \prod_{i=1}^{n} P(s_i)$$

$$S_{i-1} P(o_i \mid S_i) \quad [\pi(s_1) = P(s_1 \mid \emptyset)]$$



 O_t



What is the joint probability *P*(*the cat*, *DT NN*)?

(A)	$(0.8 \times 0.8) \times (0.9 \times 0$	4
<i>(B)</i>	$(0.2 \times 0.8) \times (0.9 \times 0$	4
<i>(C)</i>	$(0.3 \times 0.7) \times (0.5 \times 0)$	4
(D)	$(0.8 \times 0.2) \times (0.5 \times 0)$	• -

The answer is (A).

the	cat
0.9	0.1
0.5	0.5

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./. **3** Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

Learning

Maximum likelihood estimates:

$$P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$$
$$P(o | s) = \frac{Count(s, o)}{Count(s, o)}$$

Q: How many probabilities to estimate? A: transition probabilities - $(K + 1) \times K$ emission probabilities - $|V| \times K$

Learning example

- The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP 2.
- 3. The/DT old/NN man/VBP the/DT boat/NN

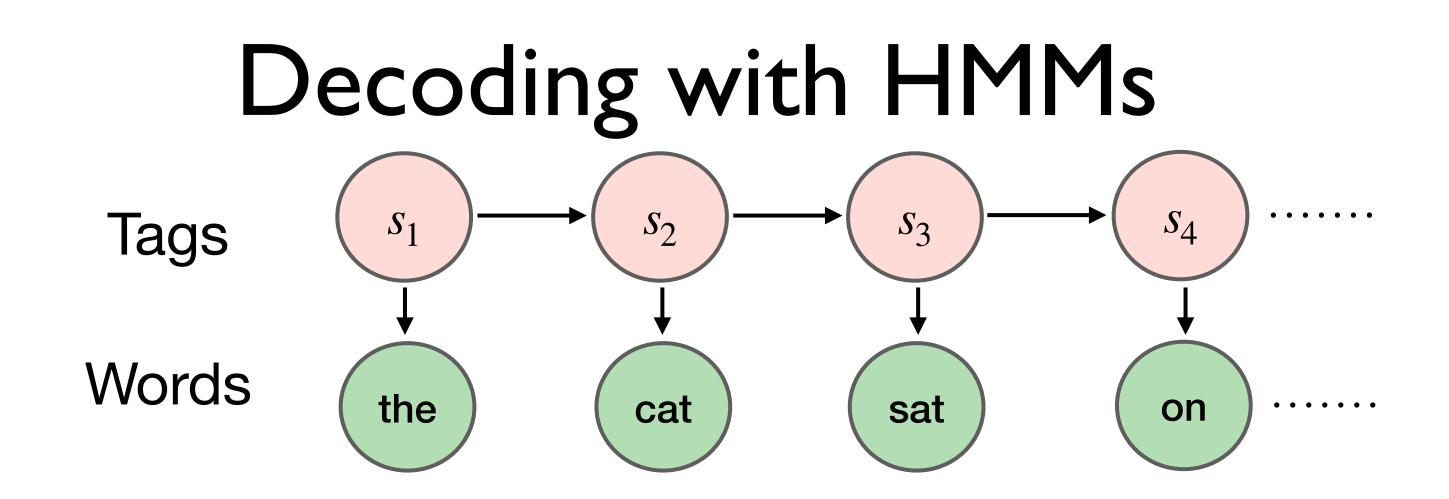
$\pi(DT) = P(DT \mid \emptyset) = 2/3$

- P(NN|DT) = 4/4 P(DT|IN) = 1/2
- P(cat | NN) = 1/4 P(the | DT) = 2/4

Maximum likelihood estimates:

$$P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$$
$$P(o | s) = \frac{Count(s, o)}{Count(s, o)}$$

(assuming we differentiate cased vs uncased words)



Task: Find the most probable sequence of states $S = s_1, s_2, \ldots, s_n$ given the observations $O = o_1, o_2, \ldots, o_n$ $\hat{S} = \arg\max_{S} P(S \mid O) = \arg\max_{S} \frac{P(O \mid S)P(S)}{P(O)}$ [Bayes' rule]

How can we maximize this? = argma $s_1, s_2,$ Search over all state sequences?

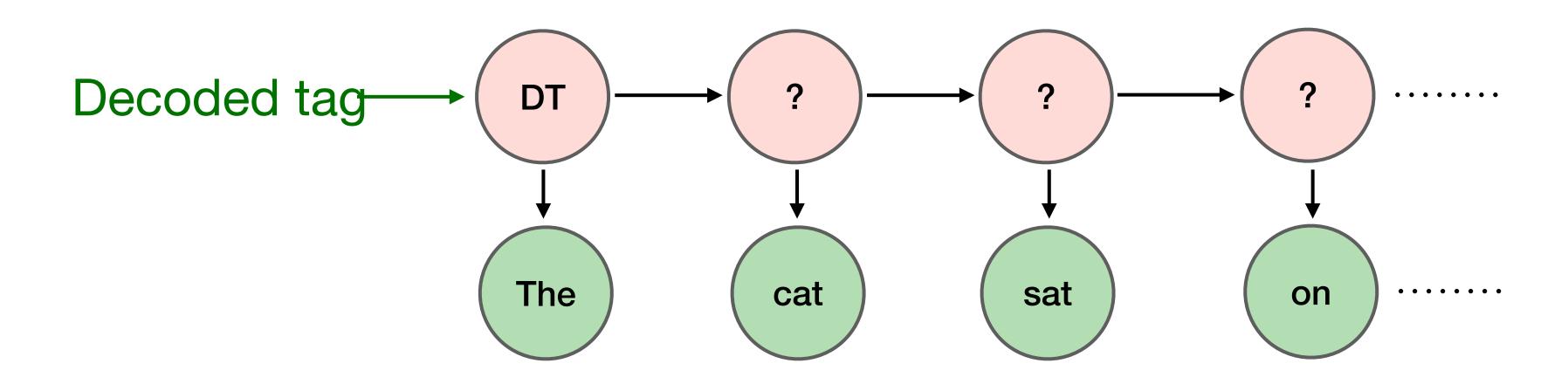
$$\underset{s_n}{\text{ax}} \prod_{i=1}^{n} P(o_i | s_i) P(s_i | s_{i-1}) \quad \text{[Markov assumption]}$$

 $= \arg \max_{C} P(O \mid S) P(S)$ [P(O) doesn't depend on S!]

2 min stretch break

Greedy search

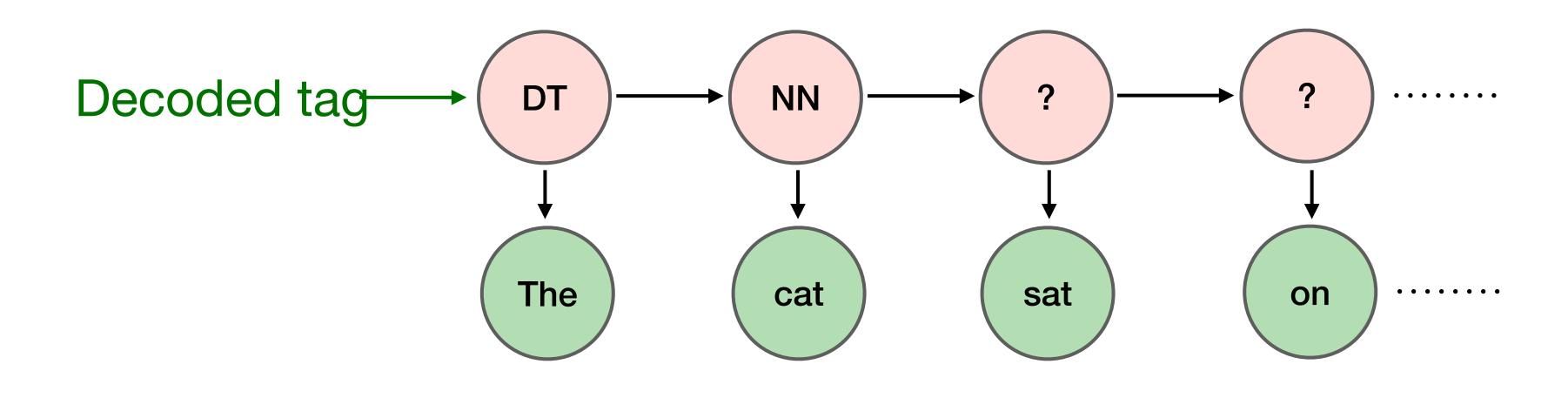
• Idea: Decode one state at at time



 $\underset{s}{\arg \max \pi(s_1 = s)p(\text{The} \mid s) = \text{DT}}$

Greedy search

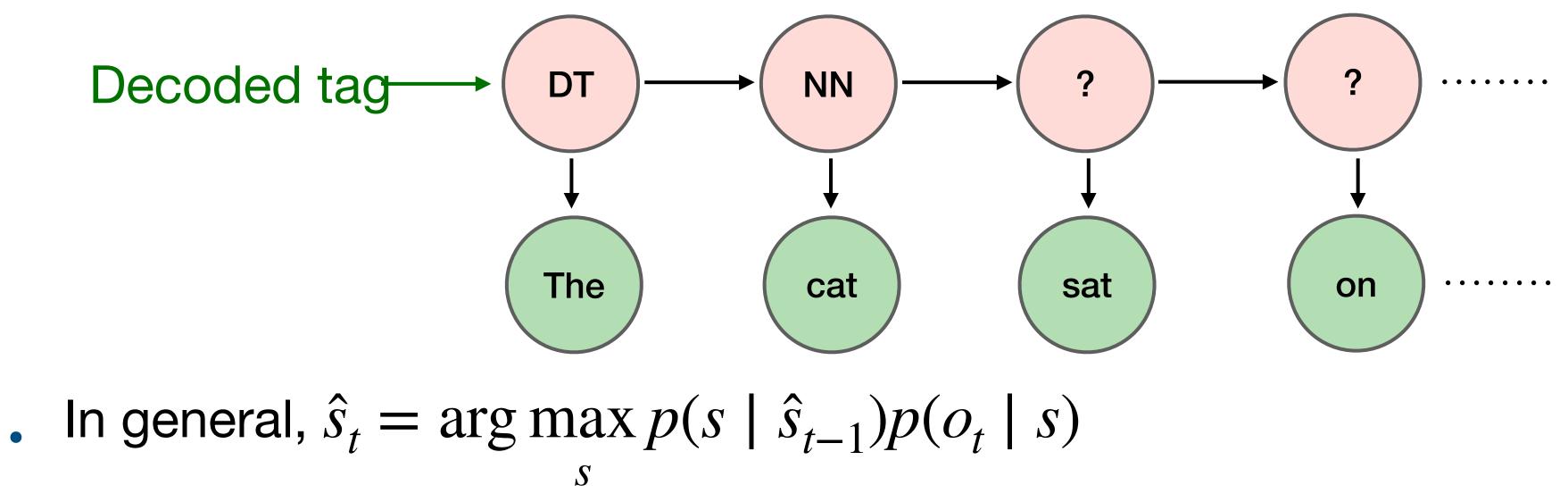
Idea: Decode one state at at time



 $\arg \max p(s \mid DT)p(\mathsf{cat} \mid s) = \mathsf{NN}$ S

Greedy search

Idea: Decode one state at at time



• Very efficient, but not guaranteed to be optimum!

- Use dynamic programming!
- Maintain some extra data structures
- Probability lattice, M[T, K] and backtracking matrix, B[T, K]
 - *T* : Number of time steps
 - *K* : Number of states
- *M*[*i*, *j*] stores joint probability of most probable sequence of states ending with state j at time i,
- B[i, j] is the tag at time i-1 in the most probable sequence ending with tag j at time i

Recall: we want to compute $\hat{S} = a$

 Let's first see how we can compute the maximum probability $\max_{s_1,\dots,s_n} \prod_{i=1}^{n} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1,\dots,s_n} P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \dots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$

Slide adapted from Vivek Srikumar

$$\arg\max_{s_1, s_2, \dots, s_n} \prod_{i=1}^n P(o_i | s_i) P(s_i | s_{i-1})$$

These are the only terms that depend on $s_1!$

Recall: we want to compute $\hat{S} = a$

 Let's first see how we can compute the maximum probability $\max_{s_1, \dots, s_n} \prod_{i=1}^{n} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1, \dots, s_n} P(o_n | s_n) \cdot$

> $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $s_2,...,s_n$

Slide adapted from Vivek Srikumar

$$\arg \max_{s_1, s_2, \dots, s_n} \prod_{i=1}^n P(o_i | s_i) P(s_i | s_{i-1})$$

$$P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$$

$$s_{n-1} \cdots P(o_2 | s_2) \cdot \max_{s_1} P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$$

Define $score_1(s) = P(o_1 | s) \cdot P(s)$

Recall: we want to compute $\hat{S} = a$

 Let's first see how we can compute the maximum probability $\max_{s_1, \dots, s_n} \prod_{i=1}^{n} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1, \dots, s_n} P(o_n | s_n) \cdot$ $s_1, \dots s_n \stackrel{\blacktriangle}{\stackrel{\scriptstyle \blacksquare}{i=1}}$

> $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ S_2,\ldots,S_n

> $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ s_2,\ldots,s_n

Slide adapted from Vivek Srikumar

$$\arg\max_{s_1,s_2,...,s_n} \prod_{i=1}^n P(o_i | s_i) P(s_i | s_{i-1})$$

$$P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$$

$$s_{n-1} \cdots P(o_2 | s_2) \cdots \max_{s_1} P(s_2 | s_1) \cdots P(o_1 | s_1) \cdots P(s_1)$$

 $s_{n-1} \cdots \cdots P(o_2 | s_2) \cdots \max_{s_1} P(s_2 | s_1) \cdots \operatorname{score}_1(s_1)$

Define $score_1(s) = P(o_1 | s) \cdot P(s)$

 $\max_{s_1,\dots,s_n} \prod_{i=1}^{n} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1,\dots,s_n} P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \dots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$

 $s_2, ..., s_n$

 $= \max_{s_{n-1}} P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot \max_{s_1} P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$ = max $P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot \max P(s_2 | s_1) \cdot \text{score}_1(s_1)$ $s_2, ..., s_n$

Slide adapted from Vivek Srikumar

Define $score_1(s) = P(o_1 | s) \cdot P(s)$

- $\max_{s_1, \dots, s_n} \prod_{i=1}^{n-1} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1, \dots, s_n} P(o_n | s_n)$
 - $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $s_2, ..., s_n$
 - $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $s_2,...,s_n$
 - $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $s_3, ..., s_n$

Slide adapted from Vivek Srikumar

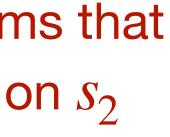
$$\cdot P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$$

$$s_{n-1}) \cdots P(o_{2} | s_{2}) \cdots \max_{s_{1}} P(s_{2} | s_{1}) \cdot P(o_{1} | s_{1}) \cdot P(s_{1})$$

$$s_{n-1}) \cdots P(o_{2} | s_{2}) \cdots \max_{s_{1}} P(s_{2} | s_{1}) \cdot \text{score}_{1}(s_{1})$$

$$s_{n-1}) \cdots P(o_{3} | s_{3}) \max_{s_{2}} P(s_{3} | s_{2}) \cdot P(o_{2} | s_{2}) \cdot \prod_{s_{2}} Only \text{ terr}_{s_{2}} depend of$$

Define $score_1(s) = P(o_1 | s) \cdot P(s)$



- $\max_{s_1,\dots,s_n} \prod_{i=1}^{n} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1,\dots,s_n} P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \dots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$
 - S_2,\ldots,S_n
 - S_2,\ldots,S_n
 - $s_3, ..., s_n$

Slide adapted from Vivek Srikumar

 $= \max_{s} P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot \max_{s} P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$ = max $P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot \max P(s_2 | s_1) \cdot \text{score}_1(s_1)$ $= \max P(o_n | s_n) \cdot P(o_{n-1} | s_{n-1}) \cdots P(o_3 | s_3) \max P(s_3 | s_2) \cdot P(o_2 | s_2) \cdot$ $\max_{s_1} P(s_2 | s_1) \cdot \text{score}_1(s_1)$

> Define $score_i(s) = max P(s | s_{i-1}) P(o_i | s) score_{i-1}(s)$ S_{i-1}

- $\max_{s_1, \dots, s_n} \prod_{i=1}^{n-1} P(o_i | s_i) P(s_i | s_{i-1}) = \max_{s_1, \dots, s_n} P(o_n | s_n)$
 - $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $S_2,...,S_n$
 - $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $s_2, ..., s_n$
 - $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $S_3, ..., S_n$

 $= \max P(o_n | s_n) \cdot P(o_{n-1} |$ $S_3, ..., S_n$

Slide adapted from Vivek Srikumar

$$\cdot P(o_{n-1} | s_{n-1}) \cdot \cdots P(o_2 | s_2) \cdot P(s_2 | s_1) \cdot P(o_1 | s_1) \cdot P(s_1)$$

$$s_{n-1}) \cdots P(o_{2} | s_{2}) \cdot \max_{s_{1}} P(s_{2} | s_{1}) \cdot P(o_{1} | s_{1}) \cdot P(s_{1})$$

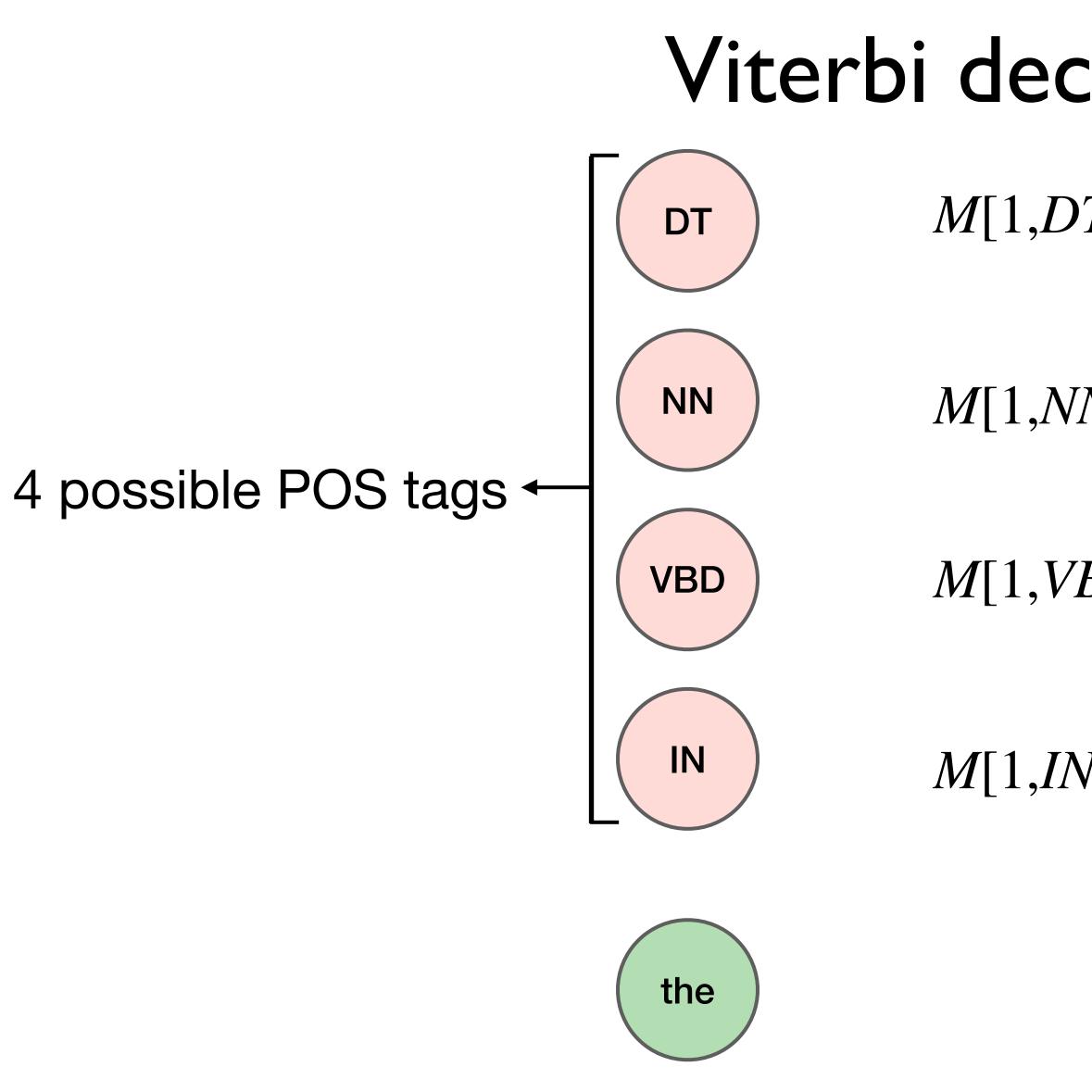
$$s_{n-1}) \cdots P(o_{2} | s_{2}) \cdot \max_{s_{1}} P(s_{2} | s_{1}) \cdot \text{score}_{1}(s_{1})$$

$$s_{n-1}) \cdots P(o_{3} | s_{3}) \max_{s_{2}} P(s_{3} | s_{2}) \cdot P(o_{2} | s_{2}) \cdot \sum_{s_{2}} P(s_{2} | s_{1}) \cdot \text{score}_{1}(s_{1})$$

$$s_{n-1}) \cdots P(o_{3} | s_{3}) \max_{s_{2}} P(s_{3} | s_{2}) \cdot \text{score}_{2}(s_{2})$$

Define $\operatorname{score}_{i}(s) = \max P(s | s_{i-1}) P(o_{i} | s) \operatorname{score}_{i-1}(s)$ S_{i-1}

- Use dynamic programming!
- Maintain some extra data structures
- Probability lattice, M[T, K] and backtracking matrix, B[T, K]
 - *T* : Number of time steps
 - *K* : Number of states
- *M*[*i*, *j*] stores joint probability of most probable sequence of states ending with state j at time i,
- B[i, j] is the tag at time i-1 in the most probable sequence ending with tag j at time i

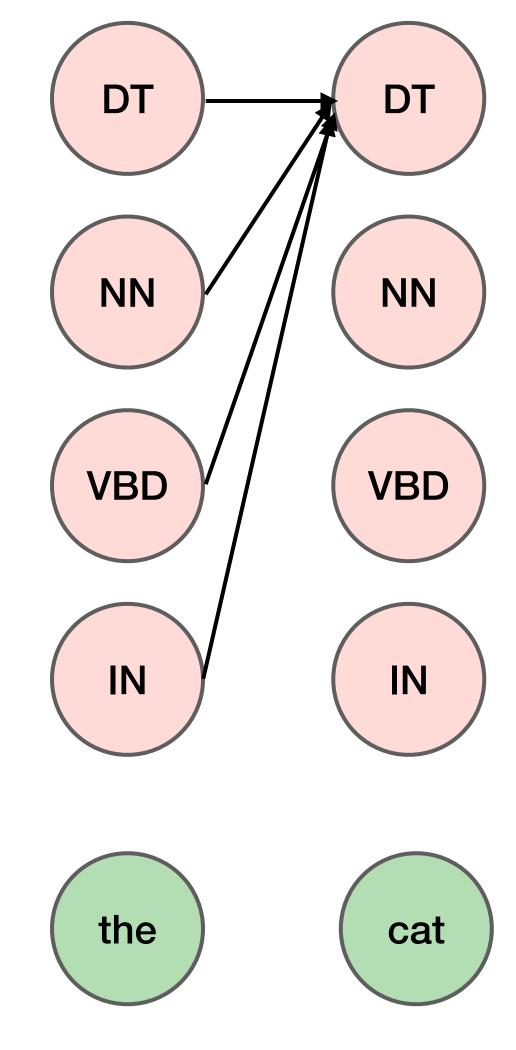


Forward

Viterbi decoding example

- $M[1,DT] = \pi(DT) P(\mathsf{the} | DT)$
- $M[1,NN] = \pi(NN) P(\text{the}|NN)$
- $M[1, VBD] = \pi(VBD) P(\text{the} | VBD)$
- $M[1,IN] = \pi(IN) P(\text{the} | IN)$

Initialize the table: We store $score_1(s) = P(o_1 | s) \cdot P(s)$ in table M[1, :]



Forward

 $M[2,DT] = \max_{k} M[1,k] P(DT|k) P(cat|DT)$

 $M[2,NN] = \max M[1,k] P(NN|k) P(\operatorname{cat}|NN)$

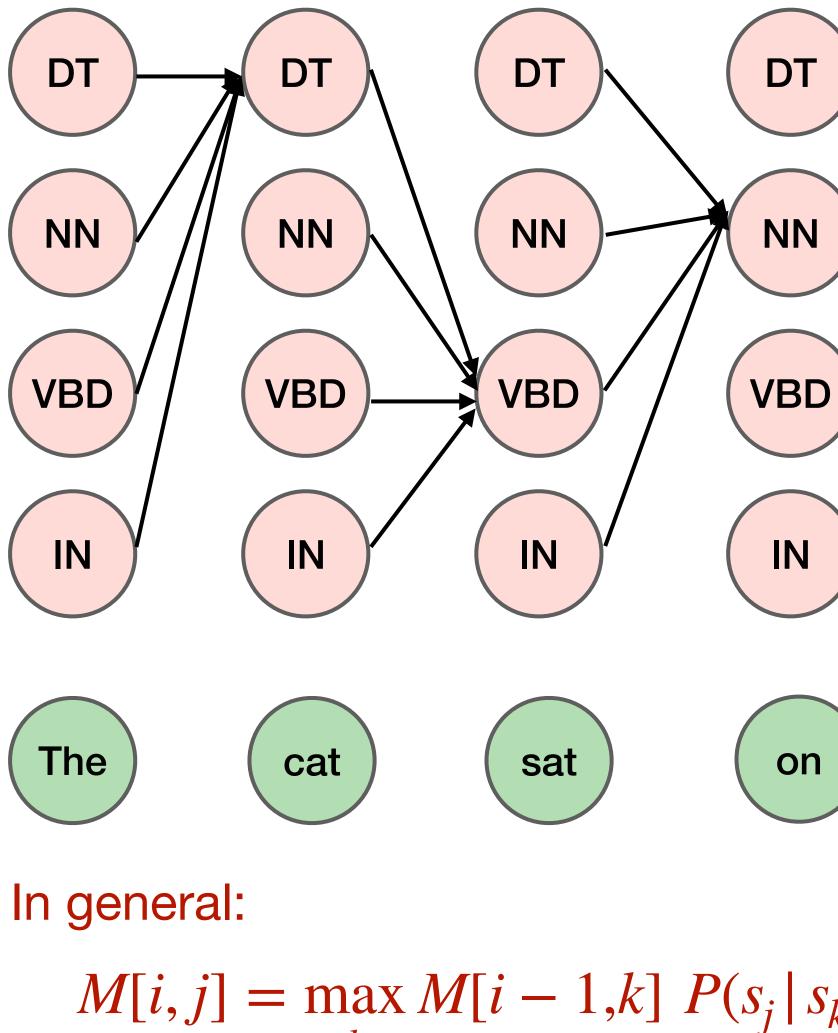
 $M[2, VBD] = \max_{k} M[1,k] P(VBD \mid k) P(\operatorname{cat} \mid VBD)$

 $M[2,IN] = \max_{k} M[1,k] P(IN|k) P(\operatorname{cat}|IN)$

Next: We store $score_2(s) = max P(s | s_1) \cdot P(o_2 | s) \cdot M[1, s_1]$ *s*₁ in table M[2, :]

.

.



What is the time complexity of this algorithm? Let n be the number of time steps (length of the sequence), and K be the number of states.

> O(n)(A)O(nK)(B)(C) $O(nK^2)$ $O(n^2K)$ (D)

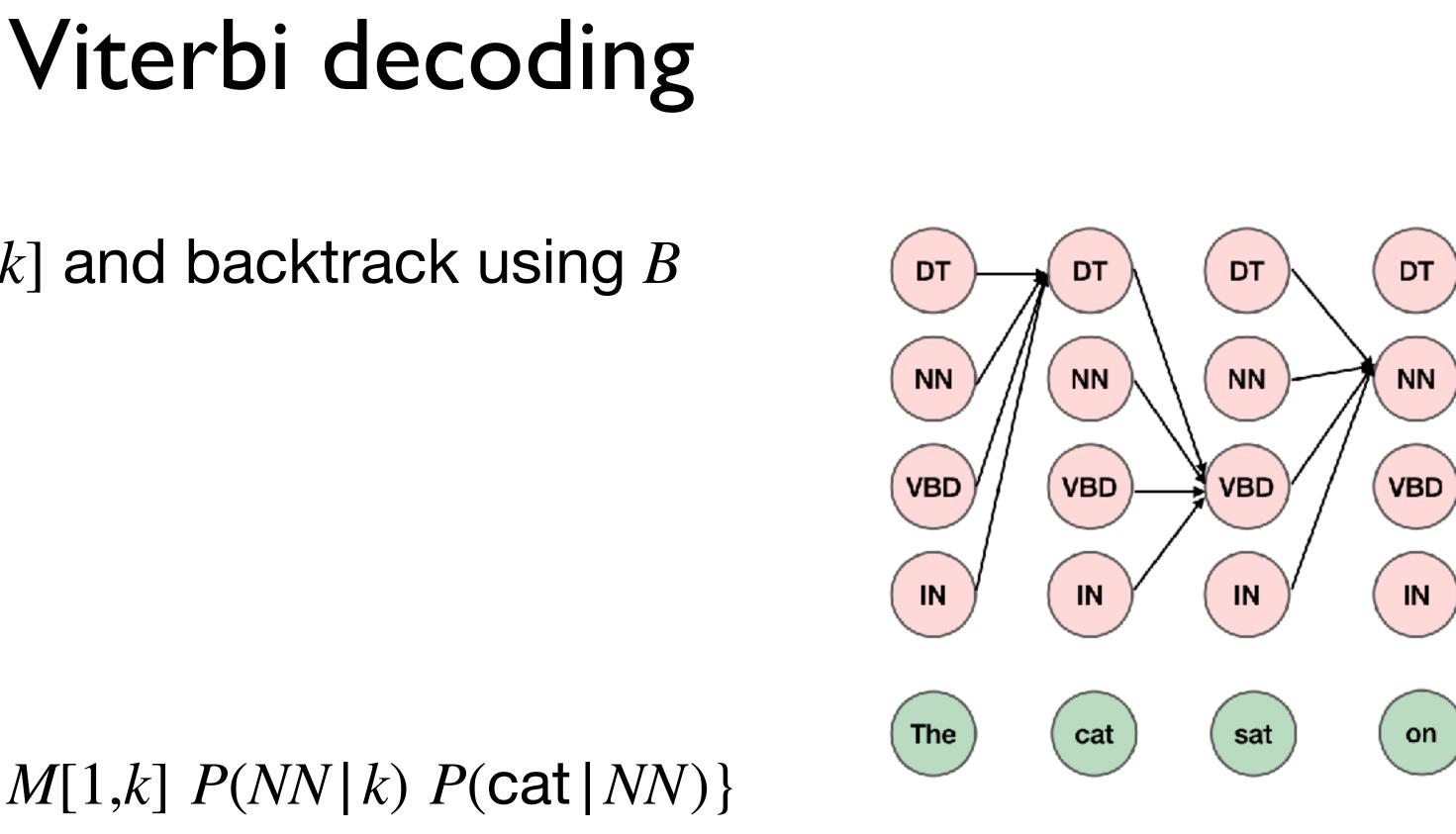
> > The answer is (C).

 $M[i,j] = \max M[i-1,k] P(s_i | s_k) P(o_i | s_j) \quad 1 \le k \le K \quad 1 \le i \le n$

Pick max M[n, k] and backtrack using B Backward:

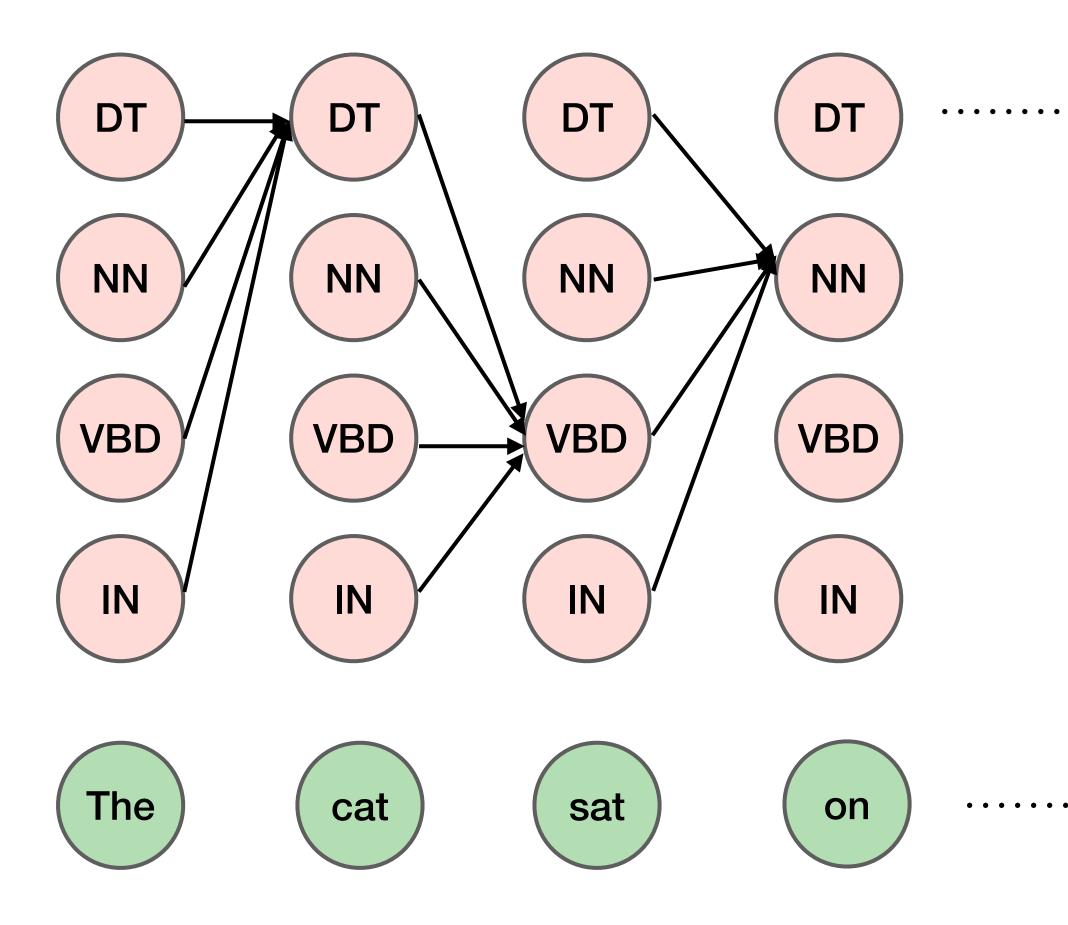
 $M[2,NN] = \max\{M[1,k] \ P(NN|k) \ P(\operatorname{cat}|NN)\}$

 $M[2,NN] = \max\{M[1,k] + \log P(NN|k) + \log P(\operatorname{cat}|NN)\}$

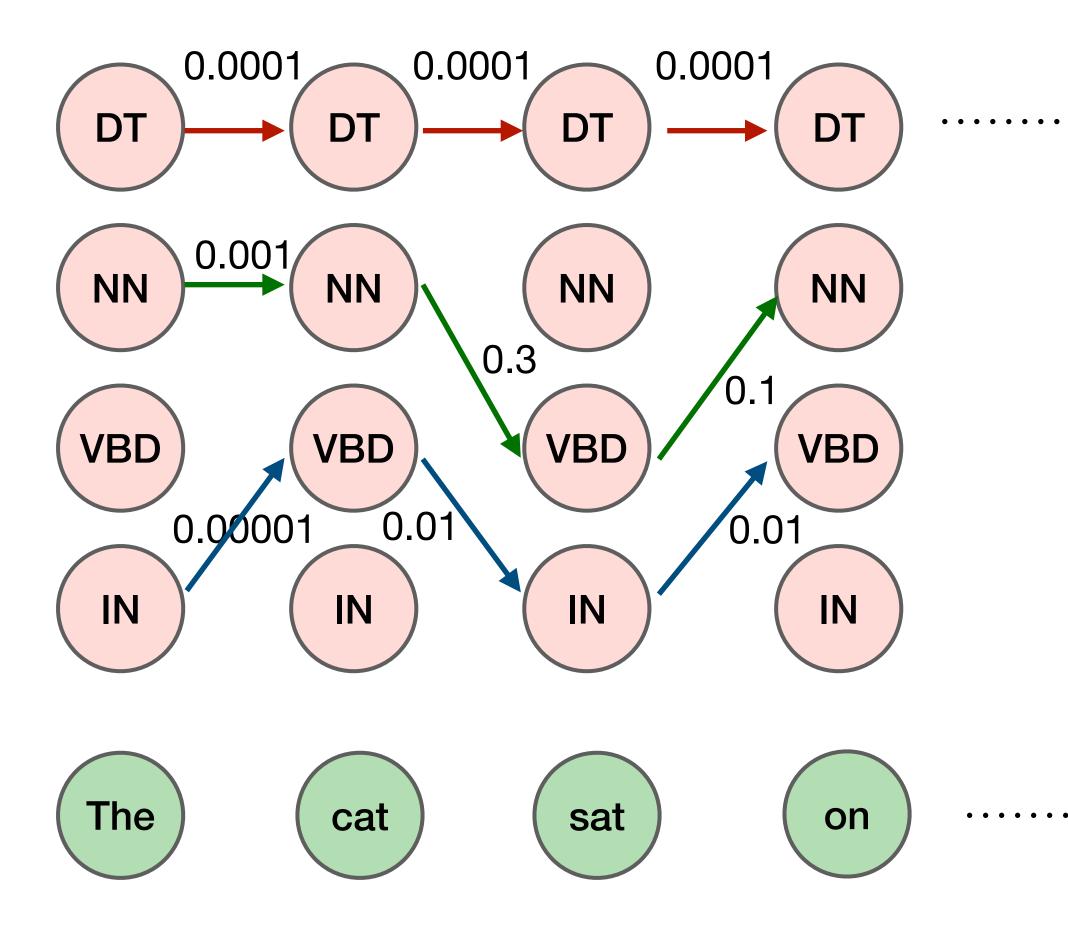


• In practice, we maximize sum of log probabilities (or minimize the sum of negative log probabilities) instead of maximize the product of probabilities

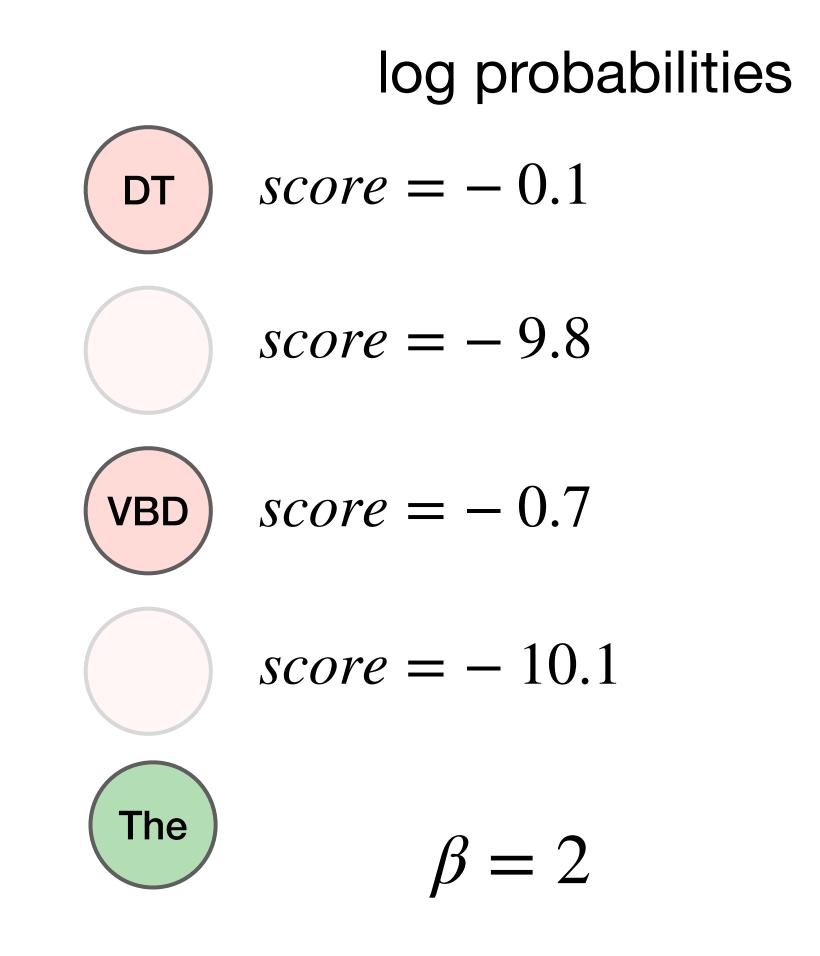
 If K (number of possible hidden states) is too large, Viterbi is too expensive!



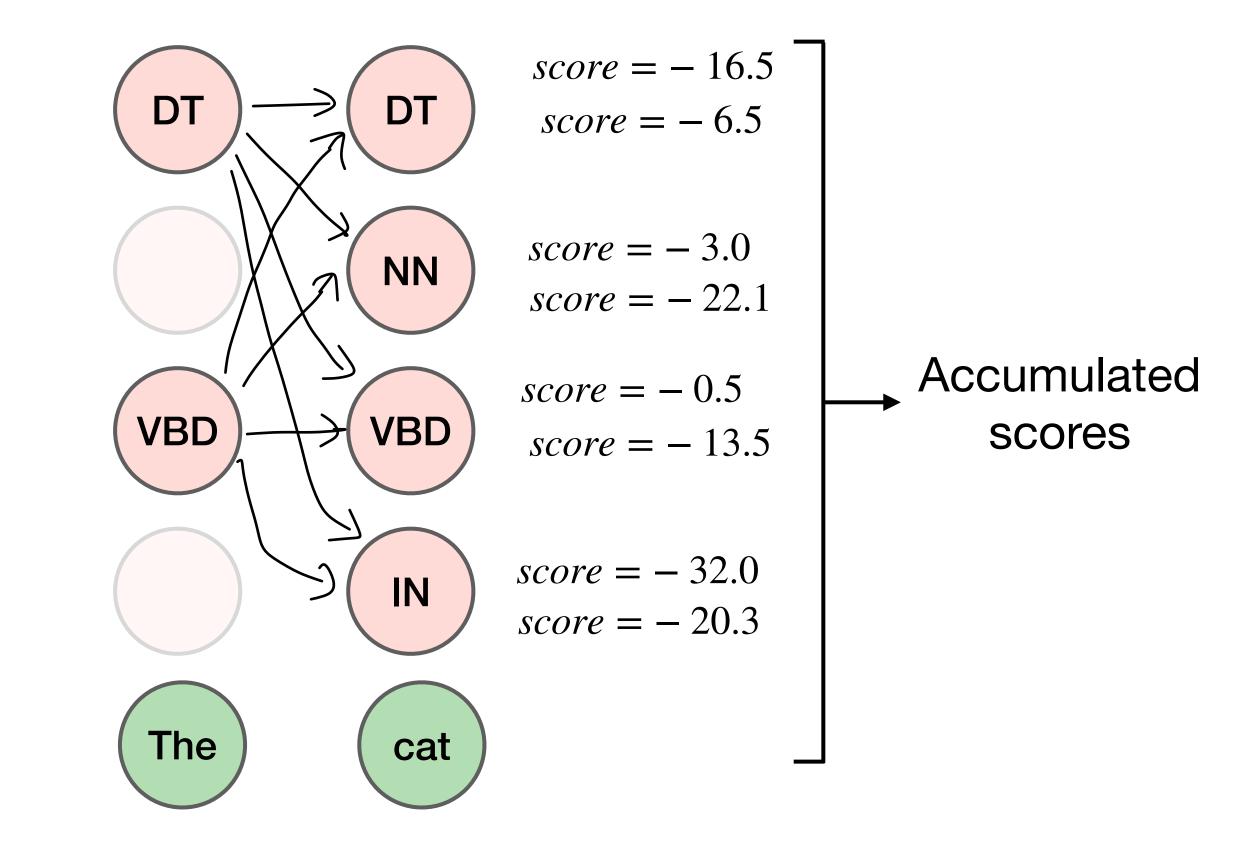
- If K (number of possible hidden states) is too large, Viterbi is too expensive!
- Observation: Many paths have very low likelihood!



- If K (number of possible hidden states) is too large, Viterbi is too expensive!
- **Observation:** Many paths have very low likelihood!
- Keep a fixed number of hypotheses at each point
 - Beam width = β

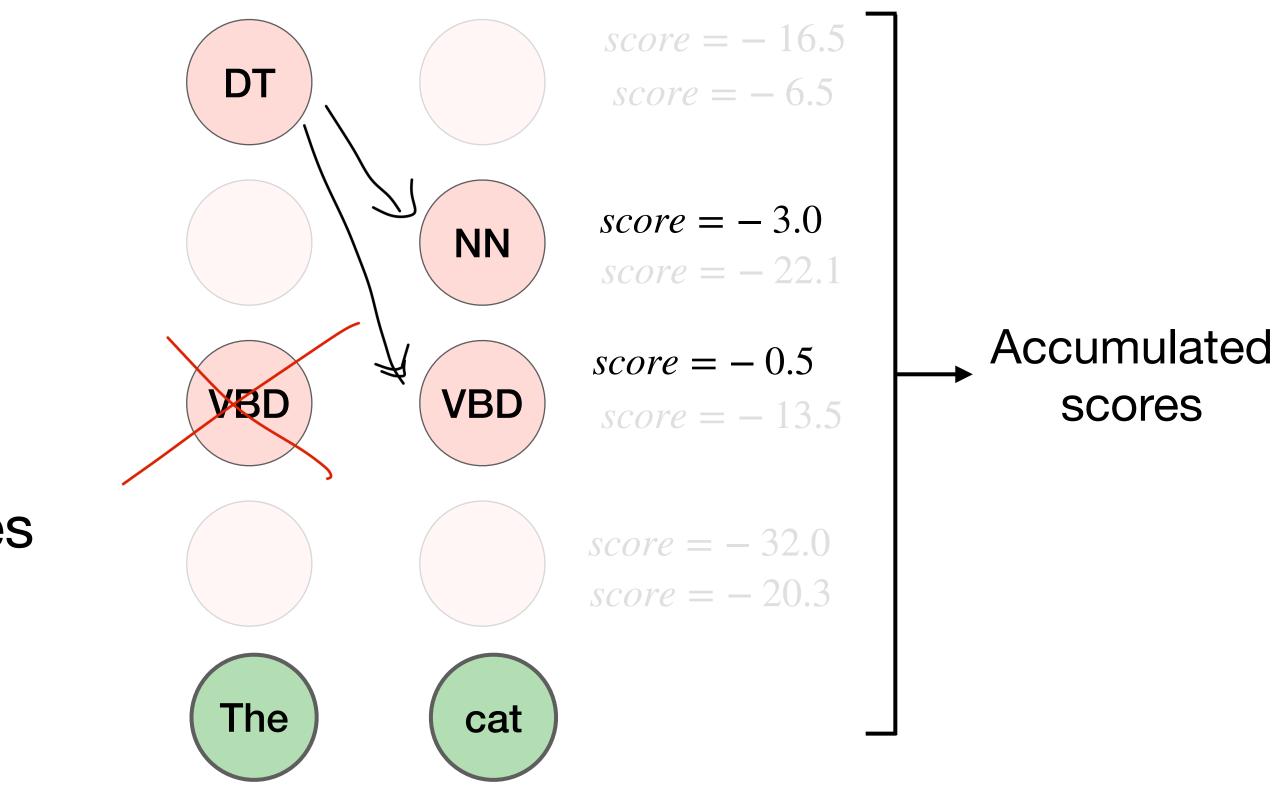


- If K (number of possible hidden) states) is too large, Viterbi is too expensive!
- **Observation:** Many paths have very low likelihood!
- Keep a fixed number of hypotheses at each point
 - Beam width = β



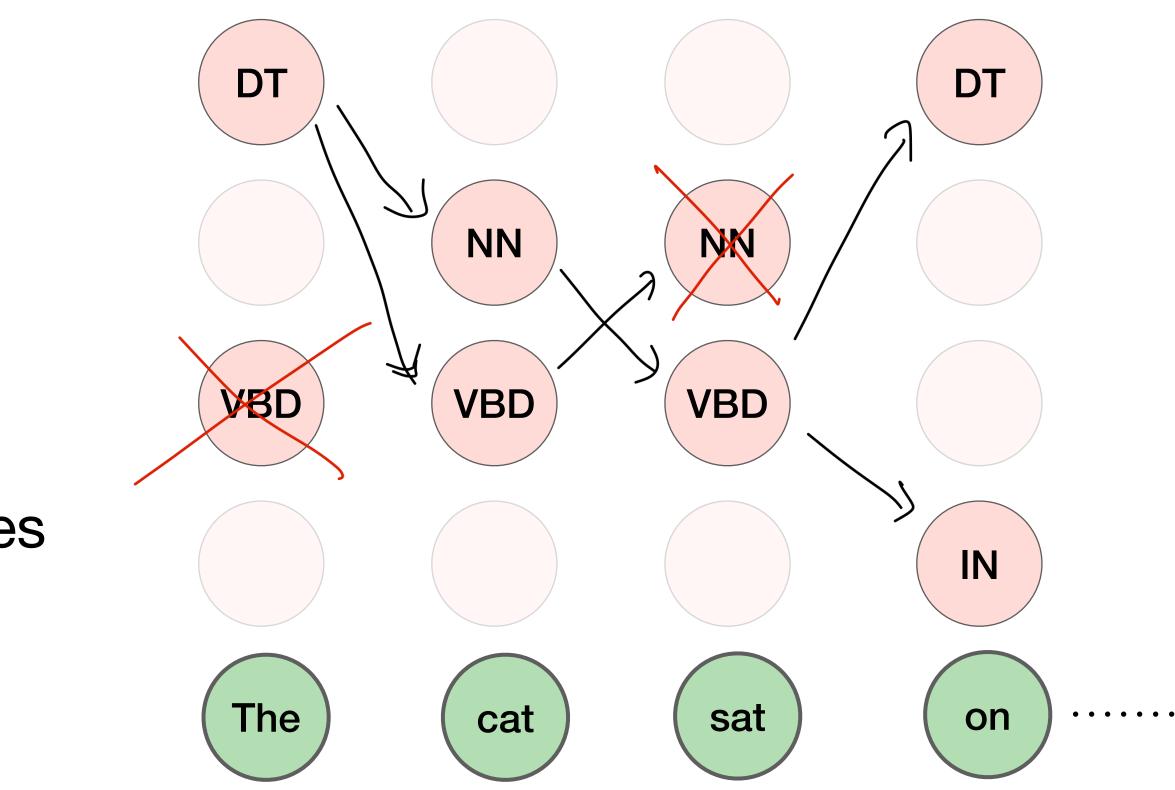
Step 1: Expand all partial sequences in current beam

- If K (number of possible hidden) states) is too large, Viterbi is too expensive!
- **Observation:** Many paths have • very low likelihood!
- Keep a fixed number of hypotheses at each point
 - Beam width = β



Step 2: Prune back to top β scores (sort and select) ... repeat!

- If K (number of possible hidden states) is too large, Viterbi is too expensive!
- Observation: Many paths have very low likelihood!
- Keep a fixed number of hypotheses at each point
 - Beam width = β



Pick $\max_{k} M[n, k]$ from *k* within beam and backtrack

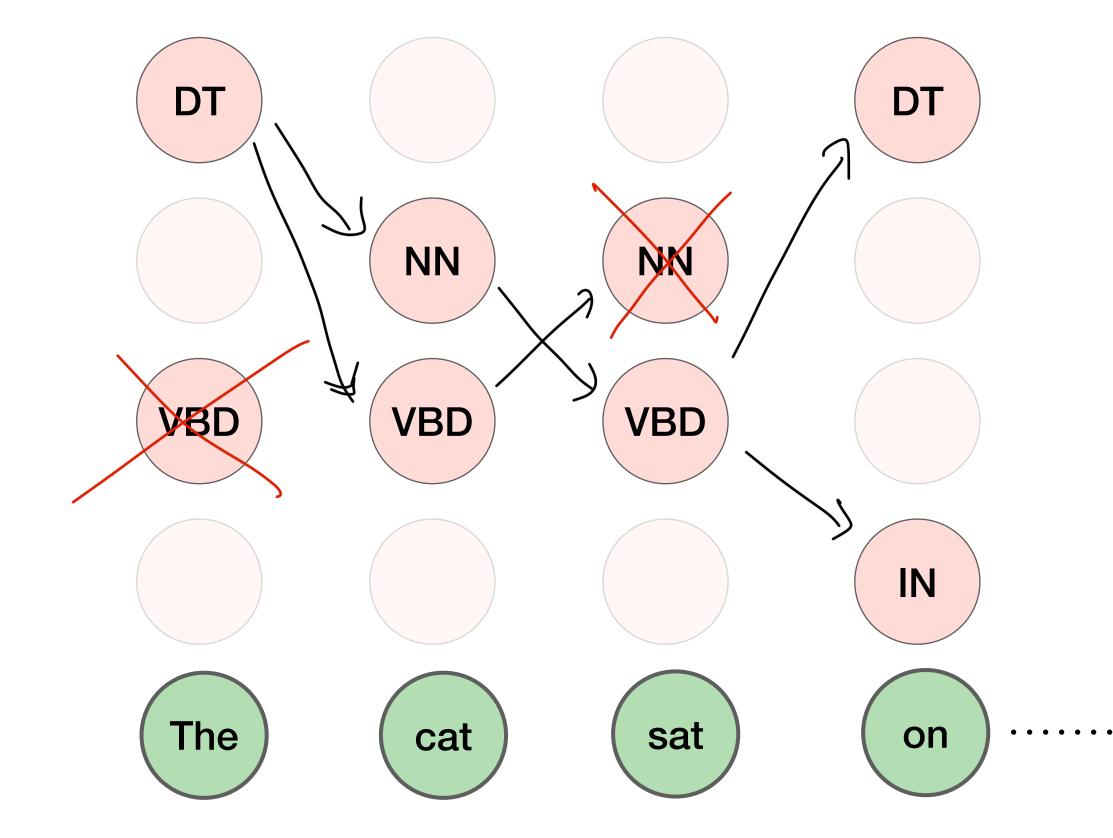
What is the time complexity of Beam search? Assume n = number of timesteps, K = number of states, β = beam width

(A)
$$O(n\beta)$$

(B) $O(nK\beta)$
(C) $O(n\beta^2)$
(D) $O(nK\beta^2)$

The answer is (B): $O(nK\beta)$

Beam search



Pick max M[n, k] from within beam and backtrack

Wrap up

- Hidden Markov models
- Viterbi algorithm
 - sequence of states
- Beam search
 - accuracy for computational savings

Use Markov assumption and dynamic programming to find optimal

• If number of states is too large, Viterbi is too expensive! Trade-off (some)