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L5:VWord Embeddings |l

Spring 2025

(Some slides adapted from Chris Manning, Dan Jurafsky)



Word embeddings

Goal: represent words as short (50-300 dimensional) & dense (real-valued) vectors

Count-based approaches Prediction-based approaches

e Used since the 90s

 Formulated as a machine learning problem

° ig?:;e word-word co-occurrence PPMI . Word2vec (Mikolov et al., 2013)

 Decomposed with SVD e GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)
“Similar words occur in similar contexts”



VWWord embeddings: the learning problem

Learning vectors from text for representing words

*  Input: —0.224 —0.124
0.130 | 0.430
- alarge text corpus, Yeat = | _( 990 fdog = | _0.200
0.329

- vocabulary V 0.276
- vector dimension d (e.g., 300) 0.234 0.290
0.266 —0.441
OUtPUt:f: V — Rd Uthe — 0239 Ulanguage — 0.762
—0.199 0.982

Note: Each coordinate/dimension of the vector doesn’t have a particular interpretation



Word2vec: How does it work!?



word2vec

- (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

- (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their
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Skip-gram

- Assume that we have a large corpus w, W,, ..., wr € V - A classification
problem!

- Key idea: Use each word to predict other words in its context

- Context: a fixed window of size 2m (m = 2 in the example)

P(b | a) = given the center word

is a, what is the probability that b
P(we_q | we) P(Weyq | We) IS a context word?

P(We_z | we) PWeyo | W)

P( - | a) is a probability

problems  turning SN b _
distribution defined over V:

banking  crises  as

L ) \ ) 1 J

1 1 || S
outside context words center word outside context words 2 l, P(W ‘ Cl) =1
in window of size 2 at position t in window of size 2 wevV

We are going to define
this distribution soon!



Skip-gram

P(We-z | we) PWerz [we) Convert into training data:
PWes L we) 2/ PWers | wo) (into, problems)
problems  turning banking crises as .. (| ntO, turn | ng)
| outside context words‘ clente'r wc;rd outside context words (into, banking)
in window of size2  at position t in window of size 2 (i nto, crises)
Poeln) b (ban klng, tu.rnlng)
- P(wt_isz C’l (v “’x ébank !(lng, |pto)
problems turn;ng int:; ﬁ cris;s a; ( (i)nar:rll?r;g(? rIaSSe)S)
outside C(')ntext wordsJ c\ente'r Worjd ‘Outside‘ context words
in window of size 2 at positiont in window of size 2

Our goal is to find parameters that can maximize

P(problems | into) X P(turning | into) X P(banking | into) X P(crises | into) X

P(turning | banking) X P(into | banking) X P(crises | banking) X P(as | banking)...



Skip-gram: objective function

For each position t = 1,2,...7T, predict context words within context size m, given center word

all the parameters to

W.. O
J be optimized

co)=11 I  Plwyw;0)

—m<j<m,j#0

It is equivalent to minimizing the (average) nejgative log likelihood:

J0) =~ log£O) =~ > Y log Pluns; | wy:6)

t=1 —m<j<m,j#0



How to define P(w,,; | w; 0)!

- Use two sets of vectors for each word in the vocabulary

u, € R? : vector for center word a,Va € V
v, € R? : vector for context word b, Vb € V

- Use inner product u, - v, to measure how likely word a appears with context word b

CXP (“wt | Vwm-) Does this term

seem familiar?
zkev e (uWr ' Vk)

P(Wt+j ‘ Wt) —



... VS multinominal logistic regression

Essentially a |V|-way classification problem

Recall: multinomial logistic regression:

exp(w, - X+ 0b,)

P(y=c|x) =

Z;ZIGXP(W]' - X+ b))

Itwe fixu,, , itis reduced to a multinomial
logistic regression problem.

However, since we have to learn both u and v
together, the training objective is non-convex.




... VS multinominal logistic regression

“convex” ‘ “non-convex”

 |tis hard to find a global minimum

- But can still use stochastic gradient descent to optimize 6:

AUFD = ) — v, ()



Important note

In this formulation, we don’t care about the classification task itself like we do for the logistic
regression model we saw previously.

The key point is that the parameters used to optimize this training objective—when the training
corpus is large enough—can give us very good representations of words (following the
principle of distributional hypothesis)!



How many parameters in this model? III

How many parameters does this model have (i.e. what is size of 6)?

J(0) = —%Z > o eXP(Uu, * Vus;)

g
t=1 —m<j<m,j#0 2 ke XP(Ww, - Vi)

(a) d|V| V := Vocabulary

d := dimension of embedding
(b) 2d| V|
(c) 2m|V| m .= size of context window
(d) 2md|V|

The answer is (b).
Each word has two d-dimensional vectors, soitis2 X | V| X d.



word2vec formulation

log
A0 ZkEV CXp(uLUt Vk)

1 d CXp(uwt th+g)

m<)

Q: Why do we need two vectors for each word?

- Because one word is not likely to appear in its own context window, e.g., P(dog | dog)

should be low. It we use one set of vectors only, it essentially needs to minimize Ugpqg * Ugeg

Q: Which set of vectors are used as word embeddings?

- This is an empirical question. Typically just u,, but you can also concatenate the two vectors..



How to train this model!?

T
_ _i Z Z 10 exp(uwt th+3)
L t=1 —m<j53<m,3#0 ZKEV eXp(uwt Vk)
» To train such a model, we need to compute the [ Vaardvark |
vector gradient V,J(0) = Vq
- Remember that @ represents all 2d | V| model g _ | Vzebra
parameters, in one vector. Za,ardvark; |
_ Uzebra i




Vectorized gradients

f(x)=x-a of _

Rn &—a

X,a c.

f =x1a1 + 2202 + ...+ THan,

of _of of  of

Ox [6’x1’ (%2’”"(%”]




Vectorized gradients: exercises

of

Let f = exp(W - X), what is the value of a—’? (Assume w, X € R")
X

(a) W

(b) exp(w - X)
(c) exp(w - X)W
(d) x

The answer is (c).

OX; OX;

l l

p exp( Y wx) n
— = = = exp( ) wix)w



Let’s compute gradients for word2vec

1 exp(Uu, - Vu, ;)
J(6) :_Tz > o

&
t=1 —m<j<m,j#0 2 kev OXP(Uw, - Vi)

Consider one pair of center/context words (, ¢):

o ( exp(u; - V) )

ZkEV eXp(ut ' Vk)

We need to compute the gradient of y with respect to

wandv,, VkeV



Let’s compute gradients for word2vec

( exp(uy - V) ) Oy _ O(—uy-ve) 9Oog) jecy exp(uy - vy))
y _— — log P I
Zke\/ exp(ut - Vk) ouy ouy ouy
0 pey exp(ug-vg)
— v I 8ut
y = —log(exp(u; - v)) + log(z exp(uy - vi)) ‘ D kev exp(ug - vi)
keV
= —w; - Ve + log(z exp(us - vi))

keV

Recall that

exp(Wy, * Vi, +j)

ZkEV eXp(uwt ' Vk) = —V, + Z P(k | t)Vk

Plwiyj | we) =



Gradients for word2vec

What about context vectors?

dy {(P(k:t)l)ut k=c y:_log( exp(u; - ve) )

OV, Pk | t)u k + c > _key €xp(ug - vi)

See assignment 2 :)



Overall algorithm

Input: text corpus, embedding size d, vocabulary V, context size m
Initialize w,, v; randomly Vi € V

Run through the training corpus and for each training instance (t, c):

oy 0y

~ Update u, < u, ———; =—v.+ ) P(k|pv,
ou, oJu, g:‘/
oy oy (Pklt)y—Dua, k=c
Update v, «< v — ,VkeV, —=
. VP k k ﬂavk ov, {P(k\t)ut k#c



2 min stretch-break



Overall algorithm

Input: text corpus, embedding size d, vocabulary V, context size m
Initialize w,, v; randomly Vi € V

Run through the training corpus and for each training instance (t, c):

oy 0y

~ Update u, < u, ———; = —V,.+ P(k|t)v,
ou, oJu, g:‘/
oy oy (Pklt)y—Dua, k=c
Update v, « v —  VkeV, —=
. VP k k n&vk ov, {P(k\t)ut k#c

Q: Can you think of any issues with this algorithm?



Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update v, with all the words in the

vocabulary! This is very expensive computationally.

Jy Jy {(P(k\t)—l) u k=c

— =—v.+ ) Pklyyv, ; — =
ou, ) kezv SR ov;,, P(k|t) u, k# c

Negative sampling: instead of considering all the words in V, let’'s randomly sample K (5-20)

negative examples. |

o(x)

T 1+ exp(—x)

lq

cXp (llt y Vc)

ZkEV CXP (ut . Vk)
K

Softmax: y = — log

0.5

Negative sampling: y = — log (a(ut - VC)) — Z =i p(w) 108 (0(—ut : Vj))

| ' |
=1 6 -4 -2 0



Skip-gram with negative sampling (SGNS)

Key idea: Convert the | V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, ¢), we don’t predict c among all the words in the vocabulary.
Instead, we predict (t, ¢) is a positive pair, and (t, ¢’) is a negative pair for a small number of

sampled c’.

positive examples +
( C

apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -

t C t C
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot 1if

y=—1lo

O

K
(o(ug - ve)) — ZE]'NP(u') log(o(—uy - v;))
i=1

P(w): sampling according to
the frequency of words

Similar to binary logistic regression, but we need to optimize u and v together.

Ply=1|t,c)=o0c(us - ve)

ply=0|t,d)=1—0c(w;-ve) =0c(—u; - ve)



Understanding SGNS

In skip-gram with negative sampling (SGNS), how many parameters need to be updated in &
for every (t, c) pair?

K
y = —log(o(us - ve)) — Z LinP(w) l0g(o(—uy - v;))
i=1

(a) Kd

(b) 2Kd

(c) (K+ 1)d
(d) (K+2)d

The answer is (d).

We need to calculate gradients with respect tou, and (K + 1) v;

(one positive and K negatives).



Continuous Bag of Words (CBOW)

INPUT  PROJECTION OUTPUT INPUT  PROJECTION  OUTPUT
T
i w(t-2) \ S . - ) Y
/4 (t-2) ‘\\\ L(@) — H P (wt ‘ {wt+3}, T S i S m, # O)
// \\ t_]_
/ b 4 w(l-1) w(l-1) ) \\ o
// / | | \ \ SuM
f/,// NN, ,
wity)| ———» i —7 w(l)
I‘\\\\\\\ - it J W s ' 1
\\ A w1 1) L _‘—/_ L v .
1 w( / ‘[; - t‘l‘j
% / 2m _ ,
e wies| ¥ —m=<j<m,j70
P(we | {wisj}) = Xpltly, - V1)
Skip-gram Continuous Bag of Words (CBOW) t t+7 o -



GloVe: Global Vectors

. Take the global co-occurrence statistics: X; j

- Key idea: let’s approximate u; - V; using their co-occurrence counts directly

J©) = Y X )(u;- v, + b+ b~ log X, )

i.jicV

- f: Weighting function, want to give more importance to more common 0

08

pairs, but capped at a certain point f ~

06

04

Advantages:

02

00

» Training faster

- Scalable to very large corpora

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation



Fast Text: Subword Embeddings

e Similar to Skip-gram, but break words into n-grams withn =3 to 6
where: 3-grams:. <wh, whe, her, ere, re>
4-grams: <whe, wher, here, ere>
5-grams: <wher, where, here>
6-grams: <where, where>

e Replace u; - v; by Z Ug -V

gen-grams(w; )

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information



Trained word embeddings available

e word2vec: https://code.google.com/archive/p/word2avec/

e GloVe: https://nlp.stanford.edu/projects/glove/

e FastText: https://fasttext.cc/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License v1.0 whose full text can be found at:
http:.//www.opendatacommons.org/licenses/pddl/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
o Common Crawl (42B tokens, 19M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
o Iwitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove twitter278.zip

« Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages


https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Easy to use!

gensim.models KeyedVectors

model KeyedVectors. load_word2vec_format('data/GoogleGoogleNews-vectors-negative300.bin', binary-True)

vector model['easy']

In [17]: model.similarity('straightforward', 'easy’)
Out[17]: 0.5717043285477517
In [18]: model.similarity('simple’, 'impossible')

Out[l8]: 0.29156160264633707

In [19]: model.most similar('simple’)

Out[19]: [('straightforward', 0.7460169196128845),
('Simple’, 0.7108174562454224),
('uncomplicated’, 0.6297484636306763),
('simplest’, 0.6171397566795349),

('easy’, 0.5990299582481384),

('fairly straightforward', 0.5893306732177734),
( 'deceptively simple’', 0.5743066072463989),
('simpler’, 0.5537199378013611),

('simplistic’', 0.5516539216041565),
('disarmingly simple', 0.5365327000617981)]



Evaluating word embeddings



Extrinsic vs intrinsic evaluation
Extrinsic evaluation
Let’s plug these word embeddings into a real NLP system and see
whether this improves performance

Could take a long time but still the most important evaluation
metric

ML model ]
(_(;558) (??931) (s5) (Zo10) (1)

.
— o

1.59
B 1 !
I don’t like

this movie



Extrinsic evaluation

Y
v

ML model j
(Ss) (Cr) (5em) (Zo0%) (139)
IT dorI’t likTe T T

this movie

A straightforward solution: given an input sentence x;,x,, ...,

X,
Instead of using a bag-of-words model, we can compute vec(x) = e(x;) + e(x,) + ...e(x,)

And then train a logistic regression classifier on vec(x) as we did before!

Note: There are much better ways to do this e.g., take
word embeddings as input of neural networks



Extrinsic vs intrinsic evaluation

Extrinsic evaluation

Let’s plug these word embeddings into a real NLP system and see

f
whether this improves performance [ ML model ]
Could take a long time but still the most important evaluation metric (_0(')?’218> <_°('fgll> (éﬁ;) (:3};) (}ié)
. . f ot ! !
Intrinsic evaluation I dont like
Evaluate on a specific/intermediate subtask

this movie
- Fast to compute

Not clear if it really helps downstream tasks



Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353: 353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

ordl Word2 Human (mean)_

tiger

tiger tlger
book paper
computer internet
plane car
professor doctor
stock phone
stock CD
stock jaguar

7.35
10

7.46
7.58
5.77
6.62
1.62
1.31
0.92

A — . —

u; - ’U,j

will2 x ||wj|]2

COS(’U,,', , Uy ) —

Metric: Spearman rank correlation


http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 56.5 71.5 71.0 53.6 34.7
SVD-LL 6B | 65.7 727 75.1 56.5 37.0
CBOW' 6B | 572 65.6 682 57.0 325
SG" 6B | 628 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-LL 42B | 740 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 59.4 455

SG: Skip-gram




Intrinsic evaluation: word analogy

Word analogy test: a : a* :: b : b*

b* = arg max cos(e(w),e(a™) —e(a) + e(b))

semantic syntactic

Chicago:lllinois~Philadelphia: ? bad:worst & cool: ?

More examples at
http://download.tensorflow.org/data/questions-words.txt

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 55.9 50.1 53.2
HPCA 100 16B | 42 164 10.8
GloVe 100 1.6B | 67.5 54.3 60.3
SG 300 1B 61 61 61
CBOW 300 1.6B | 16.1 52.6 36.1
vLBL 300 15B | 54.2 64.8 60.0
ivLBL 300 1.5B | 65.2 63.0 640
GloVe 300 1.6B | 80.8 615 703
SVD 30 6B 6.3 8.1 7.3
SVD-S 300 6B | 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW'™ 300 6B | 63.6 67.4 65.7
SGT 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 67.0 71.7
CBOW 1000 6B | 57.3 689 63.7
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 38.4 58.2 49.2
GloVe 300 42B | 81.9 693 75.0

Metric: accuracy



http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

VWWord embeddings recap

Goal: represent words as short (50-300 dimensional) & dense (real-valued) vectors

Count-based approaches Prediction-based approaches
Used since the 90s - Formulated as a machine learning problem
Sparse word-word co-occurrence PPMI - Using center word to predict context words
maitrix (or vice-versa)
Decomposed with SVD - Word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), Fasttext
(Bojanowski et al., 2017)

Evaluations:
- Extrinsic (performance on downstream task)
» Intrinsic (word similarity, analogy prediction)



Up next: Sequence models

o

She

Part-of-speech (POS) tagging

PRP: Personal pronoun

VBZ: Verb, 3rd person
singular present

NN: singular noun
NNS: plural noun

IN: preposition or
subordinating
conjunction

DT. determiner



