COS 484

Natural Language Processing

L4: Neural networks for NLP

Spring 2026

From word embeddings to neural networks

—0.224 —0.124
0.130 | 0.430
Ucat — —0.290 Udog = —0.200
0.276 0.529
0.234 0.290 (
0.266 —0.441
Uthe — 0.239 Ulanguage — 0.762
—0.199 0.982

—
| —

““J-

T

-~

_

Neural Network

~

J

0.31
—0.28

T

|

0.01
—-0.91

)

don’t

1.23
1.59

) (éT:?E) (:?:ié

like this

) (

movie

)

Neural networks in NLP

Feed-forward NNs Recurrent NNs

Hidden
layer
wm) & O
Output
layer
: A — A— A — A
= =
o, =
= =
- (X3
Output
Probabilities
t
| Softmax |
| Linear |}
. /"
Convolutional NNs Transformer Cazrem)
Feed
Forward
—
s 1 ~\ | Add & Norm Je=
4 S~ r~{Add & Norm } Multi-Head
Lo Feed Attention
Oggi “-1___E_-- I Forward j } N x
non Loon H — — &LN —
: dd orm
mi el Nx | —(TAdd & Norm) e
sento e - —_— '
b e e em ulti-Head Multi-Head
molto ___..r___:___ Attention Attention
bene Iy ow 1t 1
EMO_SAD - —) —
Positional A Q Positional
embeddings convolutional layer F1a v firoa Multilayer percep- Encoding Encoding
for each word with pooling tron Input Output
multiple filters with dropout Embedding Embedding
Inputs Outputs

(shifted right)

Lecture plan

 Neural networks for NLP: a brief history
e Recap: feedfoward neural networks

e Main focus: two simple applications of NNs for NLP

e Neural bag-of-words model for text classification

e Feedforward neural language models

Neural networks for NLP: History

NN “dark ages”

 Neural network algorithms date from the 80s

e ConvNets: applied to MNIST by LeCun in 1998

C3: 1. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 15@5;5

6@28x28 |

s@uxu 120
r

NN

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e [ong Short-term Memory Networks (LSTMs): Hochreiter
and Schmidhuber 1997

e Henderson 2003: neural shift-reduce parser, not SOTA

Slide credit: Greg Durrett

Input Window

Text cat sat on the mat

2008-201 3: A glimmer of light e

K ,.K K
Feature K wy wy .. Wy

Lookup Table
LTyw: A~

e (Collobert and Weston 2011: “NLP (almost) from
Scratch”

e Feedforward NNs can replace “feature engineering”

LTW K >

e 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

e Krizhevskey et al, 2012: AlexNet for ImageNet Classification

e Socher 2011-2014: tree-structured RNNs working okay

not very good...
a b C

Slide credit: Greg Durrett

20 14: Stuff starts working

e Kim (2014) + Kalchbrenner et al, 2014: sentence classification
Convolutional Neural Networks for Sentence Classification
e ConvNets work for NLP!
Yoon Kim
New York University
e Sutskever et al, 2014: sequence-to-sequence for neural MT yhk255@nyu. edu
® LSTMS WO rk fOr Nl_l:)| A Fast and Accurate Dependency Parser using Neural Networks
. . Dan.qi Chen Christophgr D. Manning
e Chen and Manning 2014: dependency parsing O Stanford Univermty O tantond Univeries
dangi@cs.stanford.edu manning@stanford.edu

e Even feedforward networks work well for NLP!

e 2015: explosion of neural networks for everything under the sun

e 2018-2019: NLP has entered the era of pre-trained models (ELMo, GPT, BERT)

e 2020+: the emergence of large language models (GPT-3, ChatGPT, OpenAl o1/DeepSeek R1)

Why didn’t they work before!?

e Datasets too small: for machine translation, not really better until you have
1M+ parallel sentences (and really need a lot more)

 Optimization not well understood: good initialization, per-feature scaling +
momentum (Adagrad/Adam) work best out-of-the-box

e Regularization: dropout is pretty helpful
e Computers not big enough: can’t run for enough iterations

* |nputs: need word embeddings to have the right continuous semantics

Slide credit: Greg Durrett

The “promise” of deep learning

e Most NLP works in the past focused on human-designed representations and input
features

Var Definition Value in Fig. 5.2
X count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2

. I if “no” € doc
3 0 otherwise

x4 count(Ist and 2nd pronouns € doc) 3
N { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Representation learning attempts to automatically

|earn gOOd featureS and representatiOnS Low-level features Mid-level features Abstract-level features
el medmcan 22000
et AN 1 < :,;4 - -
* Deep learning attempts to learn multiple levels of e sisenz NEEA VAR ﬁ;ﬁg ié
representations on increasing complexity/abstraction EEEEEEE IA B .= UM’ = :@ - _'f
: =8 o B 1 s wiaf _

Review: Feedforward neural networks

Feed-forward NNs

* The units are connected with no cycles

 The outputs from units in each layer are passed to units in the next higher layer
e No outputs are passed back to lower layers

Fully-connected (FC) layers:

All the units from one layer
are fully connected to
every unit of the next layer.

put layer

Input layer
hidden layer 1 hidden layer 2

Feed-forward NNs

non-linear activation

iInput layer
hidden layer 1 hidden layer 2

(1) — (1) (1) (1)
h, —f(wl,lxl T W5 + wl,3x3)

Linear (dot product)
W1

[
|
2
2
*
.

(2) — (2)7,(1) (2)7,(1) (2)7,(1) (2)7,(1)
hy™ = fwyhy + wihy 7+ wishe + with,)

{ H (W - X)
S
., .
"

N
‘IA._JJ_L

non-linearity f: o, tanh or RelU.

Activation functions

RelLU

sigmoid tanh (rectified linear unit)
2 . —
f(z) = ! f(z) = & 1 f(z) = max(0, z)
1+e % e?% + 1
- 1.0} R N -
//' 8 R(z) =maxz(0, z)
05| ///
0. 0.0 |- /
05} //
,,//
| | a | | A0 b T
_6 _4 > 0 5 A 6 3 2 -1 0 1 2 3

Matrix notations

e Input layer: x e R?

* Hidden layer 1:
h; = f(WWx +bM) e R®

put Iayer W(l) c Rdl Xd’ b(l) c Rdl

iInput layer . |
hidden layer 1 hidden layer 2 Hidden layer 2:
hy = f(W®h; +b?)) € R®
*: fis applied element-wise W@ ¢ Ré2xdi p(2) ¢ R

f([Zl, 22, 23]) — [f(zl)a f(ZQ)7 f(Z3)] o Output |ayer:

C: number of classes

— (O) (O) C'Xdo
d: input dimension, d,, d,: hidden dimensions y =W hy, W eR

Feedforward NNs for multi-class classification

y = Woh, W) ¢ RE*4:

R exp(y;)
y = softmax(y) softmax(y), = —; Y = [V1s Vs +ees Vel
=1 eXp(y])
Training loss:
min ~ — 2 logy,
Wb, W W) (x,y)eD
Training feedforward NNSs: Neural networks are difficult to optimize.
stochastic gradient descent! SGD can only converge to local minimum.

Initializations and optimizers matter a lot!

Back-propagation
Forward propagation:

from Input to output layer |Forward step 1: | |Forward step 2:

Compute hl(l)’ hz(l) Compute hl(Z)’ h2(2) Forward step 3:
Compute yq, ¥,, Y3 and

[j\}la j\/Za 5\73] — SOftmaX[yla Y25 y?)]

Given: xl, .X2, X3

and the class

labely RelU RelU
(@ single training

Forward step 4
example) , —
\ - Compute loss
@ wix — w@® WY Y @

W(2) W(0< p L =—log yy
Goal: @ @ Back propagation:
oL, @ Back step 2: from output to input layer
| Back step 3:
(1) _ Compute :
ow Back step 4: | |5omoute 3 Lp AL Back step 1:
oL Compute ol. oL oL Compute
, oL , , oh® " ohd " oW oL oL oL
oW oh(D’ gnD’ oW 1 2 ,
5 oW 1 2 0y, 0y, 0y3
oW)

Back-propagation in Py lorch

O 00 Jd O U B W N BB

W W
i H W N RS

A

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

def

def

__init__(self):

super().__init__ ()

self.fcl = nn.Linear (784, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

forward(self, x):

x = F.relu(self.fcl(x))
X = F.relu(self.fc2(x))
x = self.fc3(x)

return X

Ui & W N =

import torch.optim as optim

net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), 1r=0.001, momentum=0.9)

W N =

outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizerJ;tep()

Py Torch did back-propagation for you in this one line of code!

|

Comparison: image vs text inputs

\
\ SN

7 : 7 "
- 7/

label = “dog”

a sometimes tedious film

| had to look away - this was god awful . label = positive
a gorgeous , witty , seductive movie .

e |mages: fixed-size input, continuous values

e Text: variable-length input, discrete words
e need to convert into vectors - word embeddings!

Neural “bag-of-words” models for
text classification

Neural networks for text classification

o Input: wi,wy,...,wg €V * |nput: dessert was great

e QOutput: y € C e Qutput: positive C = {positive, negative, neutral}

Solution #1: You can construct a feature vector X from the input and simply feed the
vector to a neural network, instead of a logistic regression classifier!

o

) (each x; 1s a hand-designed feature)
dessert Worcléount X 4 f o
- @ o
N \ } e X =[X{,Xy,...,X,|
was [Peivelovion x, 8D 50
. X e h = ReLU(WX + b)
great count of “no” x : @ — p(neut)
} =0 ? e V= Uh
___/
imput words x W o, Uy e § = softmax(y)

[nx1] [dpxn] & x1] [3xdy] [3x1]

Inputlayer Hiddenlayer =~ Output layer Deep learning has the promise to learn good
n=3 features softmax :
features automatically..

Neural networks for text classification

e How can we feed a variable-length input to a neural network classifier? wi, w,, ..., wpy € V

Solution #2: Let’s take the all the word embeddings of these words and aggregate them
into a vector through some pooling function!

Xmean = - - pooling: sum, mean or max
sessore— " 8 -0 L ZK: o)
was — Smbdding f°f»g —p(-) ’ K 1 |
great—""tt 8 R * h =ReLU(WX + b)
Input words X W h U y * V= Uh

[dx1] [dyXd] [3Xdy] [3x1]

. y = softmax
. — (V)
Input layer Hidden layer Output layer y y
pooled softmax
embedding

Important note: each input has a different K

Neural networks for text classification

* (+): This provides a simple and flexible way to handle variable-length input
* (+): It learns feature representations automatically from the data
* (+): It can generalize to similar inputs through word embeddings

e (-): The model throws away any sequential information of the text

neural bag-of-words model (NBOW)

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

15

whimsical
and gegen are

adventure

several yet

the “geen

fun | the

whenever h
_conventions
4 with

again it the

H fairiy always loveyy'

it

who | . . to movie
it ' but *™¥ romantic |

humor

: anyone
f”e”ﬁ'appy dialogue
recommend

it
I

It

would

to scenes | the manage

it

I

the

to

and

seen

yet

would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great

S G G G G G QT G G G G G O |, T S T O I N6 s [le)

How to train this model?

1 K
X=—) e(w,
Kz:, (W)

h = ReLU(WX + b)
y = Uh
y = softmax(y)

Training data: {(d'V, y\D), ..., (d"™, y™))
Parameters: {W, b, U}

Optimize these parameters using
stochastic gradient descent!

Word embeddings can be treated as parameters too!

E R\V\Xd

How to train this model?

e Common practice: initialize E using word embeddings

(e.g. word2vec), and optimize them using SGD!

e When the training data is small, don’t treat
K as parameters!

e When the training data is very large (e.g., language
modeling), initialization doesn’t matter much either
(= can use random Iinitialization)

Why? v(good) ~ v(bad)

Most Similar Words for

Static Non-static
good terrible
had terrible horrible
horrible lousy
lousy stupid
great nice
g0od bad decent
terrific solid
decent terrific

(Kim 2014)

Feedforward neural language models

N-gram vs neural language models

Language models: Given x;, x,, ..., X, € V, the goal is to model:

P(XI,XZ, ceeg X) — HP(.X ‘ xl’ --°9xi—1)

Bigram: P(xy, x,, ..., X,) = HP(X [Xio1) Maximum likelihood estimate:

count(the cat sat)

Irigram: P(x;, x,, ..., x,) = HP(xi | X0, X;_1) P(sat|the cat) = count(the cat)

Limitations? Can’t handle long histories!

As the proctor started the clock, the students opened their

The keys to the cabinet is/are

N-gram vs neural language models

e |f we use a 4-gram, 5-gram, 6-gram language model, it will become too sparse to
estimate the probabilities:

count(students opened their w)

P(w | students opened their) =
(| P) count(students opened their)

Dilemma: * A lot of contexts are similar and simply
 We need to model bigger context! counting them won't generalize
* The # of probabilities that we need | am a aood
to estimate grow exponentially with J count(l am a good w)
window sizel! | am a great count(l am a great w)

e(good) ~ e(great)

? 7
SR

Can we estimate the probabilities better?

Feedforward neural language models

A Neural Probabilistic Language Model ~ (Bengio et al., 2003)

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Yoshua Bengio

Probabilistic models of sequences: In the 1990s, Bengio combined neural networks with probabilistic
models of sequences, such as hidden Markov models. These ideas were incorporated into a system
used by AT&T/NCR for reading handwritten checks, were considered a pinnacle of neural network

research in the 1990s, and modern deep learning speech recognition systems are extending these
concepts.

High-dimensional word embeddings and attention: In 2000, Bengio authored the landmark paper, “"A
Neural Probabilistic Language Model,” that introduced high-dimension word embeddings as a
representation of word meaning. Bengio’s insights had a huge and lasting impact on natural language

processing tasks including language translation, question answering, and visual question answering.
His group also introduced a form of attention mechanism which led to breakthroughs in machine
translation and form a key component of sequential processing with deep learning.

Generative adversarial networks: Since 2010, Bengio’s papers on generative deep learning, in
particular the Generative Adversarial Networks (GANs) developed with Ian Goodfellow, have spawned
a revolution in computer vision and computer graphics. In one fascinating application of this work,
computers can actually create original images, reminiscent of the creativity that is considered a
hallmark of human intelligence.

https://awards.acm.org/about/2018-turing

Feedforward neural language models

A Neural Probabilistic Language Model (Bengio et al., 2003)

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Key idea: Instead of estimating raw probabillities, let’s use a
neural network to fit the probabilistic distribution of language!

P(w | | am a good)

P(w | | am a great)

Key ingredient: word embeddings e(good) ~ e(great)

Hope: this would give us similar distributions for similar contexts!

Feedforward neural language models

 Feedforward neural language models approximate the probability based
on the previous m (e.qg., 5) words - m is a hyper-parameter!

n
P(Xx{, %, ..., X,) & HP(xl- | X g s X 1)
i=1

P(mat | the cat sat on the) = ?

d: word embedding size

h: hidden size

It is a |V|-way classification problem!

the —

cat —»

sat —»

on —

the—>

N\ LT

©o00) (o00) (0o0) (000) (ooo)%&

~
S¥

(O0O0000000) =

(O0O00O00 000

>

Feedforward neural language models

P(mat | the cat sat onthe) =? d: word embedding size

Q: why concat instead of
e |nput layer (m=5): taking the average?

x = [e(the); e(cat); e(sat); e(on); e(the)] € R
e Hidden layer:
h = tanh(Wx + b) € R”

e QOutput layer
z = Uh e RV

P(w =1 | the cat sat on the)

24

B €
— Zk e

= softmax;(z)

the —

cat —»

sat —»

on —

the—>

(©o00) (00) (Oo0) (oo) (OO &

h: hidden size

SH

N/

7
3

(O0O0O000000) =

(eYeXeXeXeloXe)e)o)

o

Feedforward neural language models

e How to train this model? A: Use a lot of raw text to create training
examples and run gradient-descent optimization!

The Fat Cat Sat on the Mat is a 1996
children's book by Nurit Karlin. Published by
Harper Collins as part of the reading

the fat cat sat on — the
fat cat sat on the — mat
readiness program, the book stresses the cat sat on the mat — is

ability to read words of specific structure, sat on the mat is — a
such as -at.

e Limitations?

e W linearly scales with the context size m the fat cat — the
fat cat the — mat

* The models learns separate patterns cat the mat — is
for different positions! \

: “sat on” corresponds to
* Better solutions: recurrent NNs, Transformers.. different parameters in W

