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From word embeddings to neural networks
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Neural networks in NLP
Feed-forward NNs Recurrent NNs

Convolutional NNs Transformer



Lecture plan

• Neural networks for NLP: a brief history

• Recap: feedfoward neural networks

• Main focus: two simple applications of NNs for NLP

• Neural bag-of-words model for text classification

• Feedforward neural language models



Neural networks for NLP: History



NN “dark ages”

• ConvNets: applied to MNIST by LeCun in 1998

• Long Short-term Memory Networks (LSTMs): Hochreiter 
and Schmidhuber 1997

• Henderson 2003: neural shift-reduce parser, not SOTA

• Neural network algorithms date from the 80s

Slide credit: Greg Durrett



2008-2013: A glimmer of light

• Collobert and Weston 2011: “NLP (almost) from 
Scratch” 

• Feedforward NNs can replace “feature engineering”

• 2008 version was marred by bad experiments, 

claimed SOTA but wasn’t, 2011 version tied SOTA

• Krizhevskey et al, 2012: AlexNet for ImageNet Classification

• Socher 2011-2014: tree-structured RNNs working okay

Slide credit: Greg Durrett



2014: Stuff starts working
• Kim (2014) + Kalchbrenner et al, 2014: sentence classification 

• ConvNets work for NLP!

• Sutskever et al, 2014: sequence-to-sequence for neural MT

• LSTMs work for NLP!

• Chen and Manning 2014: dependency parsing

• Even feedforward networks work well for NLP!

• 2015: explosion of neural networks for everything under the sun

• 2018-2019: NLP has entered the era of pre-trained models (ELMo, GPT, BERT)

• 2020+: the emergence of large language models (GPT-3, ChatGPT, OpenAI o1/DeepSeek R1)



Why didn’t they work before?

• Datasets too small: for machine translation, not really better until you have 
1M+ parallel sentences (and really need a lot more)

• Optimization not well understood: good initialization, per-feature scaling + 
momentum (Adagrad/Adam) work best out-of-the-box

• Regularization: dropout is pretty helpful

• Computers not big enough: can’t run for enough iterations

• Inputs: need word embeddings to have the right continuous semantics

Slide credit: Greg Durrett



The “promise” of deep learning

• Most NLP works in the past focused on human-designed representations and input 
features

• Representation learning attempts to automatically 
learn good features and representations

• Deep learning attempts to learn multiple levels of 
representations on increasing complexity/abstraction



Review: Feedforward neural networks



Feed-forward NNs

• The units are connected with no cycles

• The outputs from units in each layer are passed to units in the next higher layer

• No outputs are passed back to lower layers

Fully-connected (FC) layers:
All the units from one layer 
are fully connected to 
every unit of the next layer.



Feed-forward NNs
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Activation functions

f(z) =
1

1 + e�z
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<latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="ntnODkgzo3T4kCfyY+K/0V4NGOg=">AAACAnicbZDLSgMxGIX/qbdaq45u3QSrUBHLTDe6EQQ3LivYC7RjyaSZNjSTGZKM0A7zAm58FTcuFPEh3Pk2phdBWw8EPs5J+PMfP+ZMacf5snIrq2vrG/nNwlZxe2fX3is2VJRIQusk4pFs+VhRzgSta6Y5bcWS4tDntOkPryd584FKxSJxp0cx9ULcFyxgBGtjde2joDw+QZeoE0hMUnqfVscZOkNu9sOnhrt2yak4U6FlcOdQgrlqXfuz04tIElKhCcdKtV0n1l6KpWaE06zQSRSNMRniPm0bFDikykun22To2Dg9FETSHKHR1P39IsWhUqPQNzdDrAdqMZuY/2XtRAcXXspEnGgqyGxQkHCkIzSpBvWYpETzkQFMJDN/RWSATS/aFFgwJbiLKy9Do1pxnYp760AeDuAQyuDCOVzBDdSgDgQe4Rle4c16sl6s91ldOWve2z78kfXxDYg8mDk=</latexit><latexit sha1_base64="ntnODkgzo3T4kCfyY+K/0V4NGOg=">AAACAnicbZDLSgMxGIX/qbdaq45u3QSrUBHLTDe6EQQ3LivYC7RjyaSZNjSTGZKM0A7zAm58FTcuFPEh3Pk2phdBWw8EPs5J+PMfP+ZMacf5snIrq2vrG/nNwlZxe2fX3is2VJRIQusk4pFs+VhRzgSta6Y5bcWS4tDntOkPryd584FKxSJxp0cx9ULcFyxgBGtjde2joDw+QZeoE0hMUnqfVscZOkNu9sOnhrt2yak4U6FlcOdQgrlqXfuz04tIElKhCcdKtV0n1l6KpWaE06zQSRSNMRniPm0bFDikykun22To2Dg9FETSHKHR1P39IsWhUqPQNzdDrAdqMZuY/2XtRAcXXspEnGgqyGxQkHCkIzSpBvWYpETzkQFMJDN/RWSATS/aFFgwJbiLKy9Do1pxnYp760AeDuAQyuDCOVzBDdSgDgQe4Rle4c16sl6s91ldOWve2z78kfXxDYg8mDk=</latexit><latexit sha1_base64="fVWwQ1I2ofWM38dTM+TFffdN8og=">AAACDXicbZC7SgNBFIbPxluMt1VLm8EoRMSwm0YbIWhjGcFcIFnD7GQ2GZy9MDMrJMu+gI2vYmOhiK29nW/jJFlBE38Y+PjPOZw5vxtxJpVlfRm5hcWl5ZX8amFtfWNzy9zeacgwFoTWSchD0XKxpJwFtK6Y4rQVCYp9l9Ome3c5rjfvqZAsDG7UMKKOj/sB8xjBSltd88ArjY7QOep4ApOE3iaVUYpOkJ3+8LHmrlm0ytZEaB7sDIqQqdY1Pzu9kMQ+DRThWMq2bUXKSbBQjHCaFjqxpBEmd7hP2xoD7FPpJJNrUnSonR7yQqFfoNDE/T2RYF/Koe/qTh+rgZytjc3/au1YeWdOwoIoVjQg00VezJEK0Tga1GOCEsWHGjARTP8VkQHWuSgdYEGHYM+ePA+NStm2yva1VaxeZHHkYQ/2oQQ2nEIVrqAGdSDwAE/wAq/Go/FsvBnv09ackc3swh8ZH98g0pmt</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit><latexit sha1_base64="G6vDyYAGjQKIG18jOKg0BSVdk0w=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVKmKZKYJuhKIblxXsBdpaMumZNjRzIckI7TAv4MZXceNCEbfu3fk2pu0I2vpD4OM/53ByfifkTCrL+jIyC4tLyyvZ1dza+sbmlrm9U5NBJChUacAD0XCIBM58qCqmODRCAcRzONSdwdW4Xr8HIVng36phCG2P9HzmMkqUtjrmgVsYHeEL3HIFoTHcxaVRgk+wnfzwseaOmbeK1kR4HuwU8ihVpWN+troBjTzwFeVEyqZthaodE6EY5ZDkWpGEkNAB6UFTo088kO14ck2CD7XTxW4g9PMVnri/J2LiSTn0HN3pEdWXs7Wx+V+tGSn3vB0zP4wU+HS6yI04VgEeR4O7TABVfKiBUMH0XzHtE52L0gHmdAj27MnzUCsVbato35zmy5dpHFm0h/ZRAdnoDJXRNaqgKqLoAT2hF/RqPBrPxpvxPm3NGOnMLvoj4+MbIhKZsQ==</latexit>

f(z) = max(0, z)
<latexit sha1_base64="kxOkDi9OteK9stnv3AMxRIaEm4s=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSxCC1ISEfQiFL14rGA/oA1ls920SzebsLtR29qf4sWDIl79Jd78N27bHLT1wcDjvRlm5vkxZ0o7zreVWVldW9/Ibua2tnd29+z8fl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4b/uB66jfuqVQsEnd6GFMvxD3BAkawNlLHzgfFUQldonaIH4vOCRqVOnbBKTszoGXipqQAKaod+6vdjUgSUqEJx0q1XCfW3hhLzQink1w7UTTGZIB7tGWowCFV3nh2+gQdG6WLgkiaEhrN1N8TYxwqNQx90xli3VeL3lT8z2slOrjwxkzEiaaCzBcFCUc6QtMcUJdJSjQfGoKJZOZWRPpYYqJNWjkTgrv48jKpn5Zdp+zenhUqV2kcWTiEIyiCC+dQgRuoQg0IPMAzvMKb9WS9WO/Wx7w1Y6UzB/AH1ucPEqeR7A==</latexit><latexit sha1_base64="kxOkDi9OteK9stnv3AMxRIaEm4s=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSxCC1ISEfQiFL14rGA/oA1ls920SzebsLtR29qf4sWDIl79Jd78N27bHLT1wcDjvRlm5vkxZ0o7zreVWVldW9/Ibua2tnd29+z8fl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4b/uB66jfuqVQsEnd6GFMvxD3BAkawNlLHzgfFUQldonaIH4vOCRqVOnbBKTszoGXipqQAKaod+6vdjUgSUqEJx0q1XCfW3hhLzQink1w7UTTGZIB7tGWowCFV3nh2+gQdG6WLgkiaEhrN1N8TYxwqNQx90xli3VeL3lT8z2slOrjwxkzEiaaCzBcFCUc6QtMcUJdJSjQfGoKJZOZWRPpYYqJNWjkTgrv48jKpn5Zdp+zenhUqV2kcWTiEIyiCC+dQgRuoQg0IPMAzvMKb9WS9WO/Wx7w1Y6UzB/AH1ucPEqeR7A==</latexit><latexit sha1_base64="kxOkDi9OteK9stnv3AMxRIaEm4s=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSxCC1ISEfQiFL14rGA/oA1ls920SzebsLtR29qf4sWDIl79Jd78N27bHLT1wcDjvRlm5vkxZ0o7zreVWVldW9/Ibua2tnd29+z8fl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4b/uB66jfuqVQsEnd6GFMvxD3BAkawNlLHzgfFUQldonaIH4vOCRqVOnbBKTszoGXipqQAKaod+6vdjUgSUqEJx0q1XCfW3hhLzQink1w7UTTGZIB7tGWowCFV3nh2+gQdG6WLgkiaEhrN1N8TYxwqNQx90xli3VeL3lT8z2slOrjwxkzEiaaCzBcFCUc6QtMcUJdJSjQfGoKJZOZWRPpYYqJNWjkTgrv48jKpn5Zdp+zenhUqV2kcWTiEIyiCC+dQgRuoQg0IPMAzvMKb9WS9WO/Wx7w1Y6UzB/AH1ucPEqeR7A==</latexit><latexit sha1_base64="kxOkDi9OteK9stnv3AMxRIaEm4s=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSxCC1ISEfQiFL14rGA/oA1ls920SzebsLtR29qf4sWDIl79Jd78N27bHLT1wcDjvRlm5vkxZ0o7zreVWVldW9/Ibua2tnd29+z8fl1FiSS0RiIeyaaPFeVM0JpmmtNmLCkOfU4b/uB66jfuqVQsEnd6GFMvxD3BAkawNlLHzgfFUQldonaIH4vOCRqVOnbBKTszoGXipqQAKaod+6vdjUgSUqEJx0q1XCfW3hhLzQink1w7UTTGZIB7tGWowCFV3nh2+gQdG6WLgkiaEhrN1N8TYxwqNQx90xli3VeL3lT8z2slOrjwxkzEiaaCzBcFCUc6QtMcUJdJSjQfGoKJZOZWRPpYYqJNWjkTgrv48jKpn5Zdp+zenhUqV2kcWTiEIyiCC+dQgRuoQg0IPMAzvMKb9WS9WO/Wx7w1Y6UzB/AH1ucPEqeR7A==</latexit>

ReLU  
(rectified linear unit)

f 0(z) =

(
1 z > 0

0 z < 0
<latexit sha1_base64="9/X76zUp6jklbnfvYpAmK6D/r4Q=">AAACH3icbZDLSgMxFIYzXmu9VV26CRa1bsqMiLpQKbpxWcFeoFNKJj3ThmYyQ5IR2qFv4sZXceNCEXHXtzFtZ6GtBwIf/39OkvN7EWdK2/bIWlhcWl5Zzaxl1zc2t7ZzO7tVFcaSQoWGPJR1jyjgTEBFM82hHkkggceh5vXuxn7tCaRioXjU/QiaAekI5jNKtJFauXP/uDA4wdfY9aDDRELNXWqIHXyEB/gG266L7QlfGQbRThtaubxdtCeF58FJIY/SKrdy3247pHEAQlNOlGo4dqSbCZGaUQ7DrBsriAjtkQ40DAoSgGomk/2G+NAobeyH0hyh8UT9PZGQQKl+4JnOgOiumvXG4n9eI9b+ZTNhIoo1CDp9yI851iEeh4XbTALVvG+AUMnMXzHtEkmoNpFmTQjO7MrzUD0tOnbReTjLl27TODJoHx2gAnLQBSqhe1RGFUTRM3pF7+jDerHerE/ra9q6YKUze+hPWaMfrzyfEQ==</latexit><latexit sha1_base64="9/X76zUp6jklbnfvYpAmK6D/r4Q=">AAACH3icbZDLSgMxFIYzXmu9VV26CRa1bsqMiLpQKbpxWcFeoFNKJj3ThmYyQ5IR2qFv4sZXceNCEXHXtzFtZ6GtBwIf/39OkvN7EWdK2/bIWlhcWl5Zzaxl1zc2t7ZzO7tVFcaSQoWGPJR1jyjgTEBFM82hHkkggceh5vXuxn7tCaRioXjU/QiaAekI5jNKtJFauXP/uDA4wdfY9aDDRELNXWqIHXyEB/gG266L7QlfGQbRThtaubxdtCeF58FJIY/SKrdy3247pHEAQlNOlGo4dqSbCZGaUQ7DrBsriAjtkQ40DAoSgGomk/2G+NAobeyH0hyh8UT9PZGQQKl+4JnOgOiumvXG4n9eI9b+ZTNhIoo1CDp9yI851iEeh4XbTALVvG+AUMnMXzHtEkmoNpFmTQjO7MrzUD0tOnbReTjLl27TODJoHx2gAnLQBSqhe1RGFUTRM3pF7+jDerHerE/ra9q6YKUze+hPWaMfrzyfEQ==</latexit><latexit sha1_base64="9/X76zUp6jklbnfvYpAmK6D/r4Q=">AAACH3icbZDLSgMxFIYzXmu9VV26CRa1bsqMiLpQKbpxWcFeoFNKJj3ThmYyQ5IR2qFv4sZXceNCEXHXtzFtZ6GtBwIf/39OkvN7EWdK2/bIWlhcWl5Zzaxl1zc2t7ZzO7tVFcaSQoWGPJR1jyjgTEBFM82hHkkggceh5vXuxn7tCaRioXjU/QiaAekI5jNKtJFauXP/uDA4wdfY9aDDRELNXWqIHXyEB/gG266L7QlfGQbRThtaubxdtCeF58FJIY/SKrdy3247pHEAQlNOlGo4dqSbCZGaUQ7DrBsriAjtkQ40DAoSgGomk/2G+NAobeyH0hyh8UT9PZGQQKl+4JnOgOiumvXG4n9eI9b+ZTNhIoo1CDp9yI851iEeh4XbTALVvG+AUMnMXzHtEkmoNpFmTQjO7MrzUD0tOnbReTjLl27TODJoHx2gAnLQBSqhe1RGFUTRM3pF7+jDerHerE/ra9q6YKUze+hPWaMfrzyfEQ==</latexit><latexit sha1_base64="9/X76zUp6jklbnfvYpAmK6D/r4Q=">AAACH3icbZDLSgMxFIYzXmu9VV26CRa1bsqMiLpQKbpxWcFeoFNKJj3ThmYyQ5IR2qFv4sZXceNCEXHXtzFtZ6GtBwIf/39OkvN7EWdK2/bIWlhcWl5Zzaxl1zc2t7ZzO7tVFcaSQoWGPJR1jyjgTEBFM82hHkkggceh5vXuxn7tCaRioXjU/QiaAekI5jNKtJFauXP/uDA4wdfY9aDDRELNXWqIHXyEB/gG266L7QlfGQbRThtaubxdtCeF58FJIY/SKrdy3247pHEAQlNOlGo4dqSbCZGaUQ7DrBsriAjtkQ40DAoSgGomk/2G+NAobeyH0hyh8UT9PZGQQKl+4JnOgOiumvXG4n9eI9b+ZTNhIoo1CDp9yI851iEeh4XbTALVvG+AUMnMXzHtEkmoNpFmTQjO7MrzUD0tOnbReTjLl27TODJoHx2gAnLQBSqhe1RGFUTRM3pF7+jDerHerE/ra9q6YKUze+hPWaMfrzyfEQ==</latexit>



Matrix notations

• Input layer: 

W(2) 2 Rd2⇥d1 ,b(2) 2 Rd2
<latexit sha1_base64="Nn6kKAXiHkkWvk29ucTEHXmcjE8=">AAACQHicfVDPS8MwGE39OeevqUcvwSFMkNEOQY9DLx6nuHWw1pKm6RaWpiVJhVH6p3nxT/Dm2YsHRbx6Mtsq6CY+CDze9z2+l+cnjEplmk/GwuLS8spqaa28vrG5tV3Z2e3IOBWYtHHMYtH1kSSMctJWVDHSTQRBkc+I7Q8vxnP7jghJY36jRglxI9TnNKQYKS15FduJkBr4YWbnt1mtcZRDh3I4Ff3sWouB14COohGRMPCs/Bh+O/x/HLlXqZp1cwI4T6yCVEGBlld5dIIYpxHhCjMkZc8yE+VmSCiKGcnLTipJgvAQ9UlPU450IDebFJDDQ60EMIyFflzBifrTkaFIylHk681xTjk7G4t/zXqpCs/cjPIkVYTj6aEwZVDFcNwmDKggWLGRJggLqrNCPEACYaU7L+sSrNkvz5NOo26ZdevqpNo8L+oogX1wAGrAAqegCS5BC7QBBvfgGbyCN+PBeDHejY/p6oJRePbALxifX2aAr6o=</latexit><latexit sha1_base64="Nn6kKAXiHkkWvk29ucTEHXmcjE8=">AAACQHicfVDPS8MwGE39OeevqUcvwSFMkNEOQY9DLx6nuHWw1pKm6RaWpiVJhVH6p3nxT/Dm2YsHRbx6Mtsq6CY+CDze9z2+l+cnjEplmk/GwuLS8spqaa28vrG5tV3Z2e3IOBWYtHHMYtH1kSSMctJWVDHSTQRBkc+I7Q8vxnP7jghJY36jRglxI9TnNKQYKS15FduJkBr4YWbnt1mtcZRDh3I4Ff3sWouB14COohGRMPCs/Bh+O/x/HLlXqZp1cwI4T6yCVEGBlld5dIIYpxHhCjMkZc8yE+VmSCiKGcnLTipJgvAQ9UlPU450IDebFJDDQ60EMIyFflzBifrTkaFIylHk681xTjk7G4t/zXqpCs/cjPIkVYTj6aEwZVDFcNwmDKggWLGRJggLqrNCPEACYaU7L+sSrNkvz5NOo26ZdevqpNo8L+oogX1wAGrAAqegCS5BC7QBBvfgGbyCN+PBeDHejY/p6oJRePbALxifX2aAr6o=</latexit><latexit sha1_base64="Nn6kKAXiHkkWvk29ucTEHXmcjE8=">AAACQHicfVDPS8MwGE39OeevqUcvwSFMkNEOQY9DLx6nuHWw1pKm6RaWpiVJhVH6p3nxT/Dm2YsHRbx6Mtsq6CY+CDze9z2+l+cnjEplmk/GwuLS8spqaa28vrG5tV3Z2e3IOBWYtHHMYtH1kSSMctJWVDHSTQRBkc+I7Q8vxnP7jghJY36jRglxI9TnNKQYKS15FduJkBr4YWbnt1mtcZRDh3I4Ff3sWouB14COohGRMPCs/Bh+O/x/HLlXqZp1cwI4T6yCVEGBlld5dIIYpxHhCjMkZc8yE+VmSCiKGcnLTipJgvAQ9UlPU450IDebFJDDQ60EMIyFflzBifrTkaFIylHk681xTjk7G4t/zXqpCs/cjPIkVYTj6aEwZVDFcNwmDKggWLGRJggLqrNCPEACYaU7L+sSrNkvz5NOo26ZdevqpNo8L+oogX1wAGrAAqegCS5BC7QBBvfgGbyCN+PBeDHejY/p6oJRePbALxifX2aAr6o=</latexit><latexit sha1_base64="Nn6kKAXiHkkWvk29ucTEHXmcjE8=">AAACQHicfVDPS8MwGE39OeevqUcvwSFMkNEOQY9DLx6nuHWw1pKm6RaWpiVJhVH6p3nxT/Dm2YsHRbx6Mtsq6CY+CDze9z2+l+cnjEplmk/GwuLS8spqaa28vrG5tV3Z2e3IOBWYtHHMYtH1kSSMctJWVDHSTQRBkc+I7Q8vxnP7jghJY36jRglxI9TnNKQYKS15FduJkBr4YWbnt1mtcZRDh3I4Ff3sWouB14COohGRMPCs/Bh+O/x/HLlXqZp1cwI4T6yCVEGBlld5dIIYpxHhCjMkZc8yE+VmSCiKGcnLTipJgvAQ9UlPU450IDebFJDDQ60EMIyFflzBifrTkaFIylHk681xTjk7G4t/zXqpCs/cjPIkVYTj6aEwZVDFcNwmDKggWLGRJggLqrNCPEACYaU7L+sSrNkvz5NOo26ZdevqpNo8L+oogX1wAGrAAqegCS5BC7QBBvfgGbyCN+PBeDHejY/p6oJRePbALxifX2aAr6o=</latexit>

• Hidden layer 2: 
h2 = f(W(2)h1 + b(2)) 2 Rd2

<latexit sha1_base64="ti/zp5Hv7rAiTgW9sNoVe9BBYoI="></latexit><latexit sha1_base64="ti/zp5Hv7rAiTgW9sNoVe9BBYoI="></latexit><latexit sha1_base64="ti/zp5Hv7rAiTgW9sNoVe9BBYoI="></latexit><latexit sha1_base64="ti/zp5Hv7rAiTgW9sNoVe9BBYoI="></latexit>

*: f is applied element-wise

f([z1, z2, z3]) = [f(z1), f(z2), f(z3)]
<latexit sha1_base64="nb0Ya5OXLynEy63m+VxQ8PVH0Sw=">AAACFnicbVDLSgMxFM34rPU16tJNsAgt1DLTCroRim5cVrAPmA5DJs20oZnMkGSEtvQr3Pgrblwo4lbc+Tdm2llo64HkHs65l+QeP2ZUKsv6NlZW19Y3NnNb+e2d3b198+CwJaNEYNLEEYtEx0eSMMpJU1HFSCcWBIU+I21/eJP67QciJI34vRrFxA1Rn9OAYqS05JlnQdEZe3YZjr1qetXcEryCTlDUYqkM01rNaq3kembBqlgzwGViZ6QAMjQ886vbi3ASEq4wQ1I6thUrd4KEopiRab6bSBIjPER94mjKUUikO5mtNYWnWunBIBL6cAVn6u+JCQqlHIW+7gyRGshFLxX/85xEBZfuhPI4UYTj+UNBwqCKYJoR7FFBsGIjTRAWVP8V4gESCCudZF6HYC+uvExa1YptVey780L9OosjB47BCSgCG1yAOrgFDdAEGDyCZ/AK3own48V4Nz7mrStGNnME/sD4/AGnpJqo</latexit><latexit sha1_base64="nb0Ya5OXLynEy63m+VxQ8PVH0Sw=">AAACFnicbVDLSgMxFM34rPU16tJNsAgt1DLTCroRim5cVrAPmA5DJs20oZnMkGSEtvQr3Pgrblwo4lbc+Tdm2llo64HkHs65l+QeP2ZUKsv6NlZW19Y3NnNb+e2d3b198+CwJaNEYNLEEYtEx0eSMMpJU1HFSCcWBIU+I21/eJP67QciJI34vRrFxA1Rn9OAYqS05JlnQdEZe3YZjr1qetXcEryCTlDUYqkM01rNaq3kembBqlgzwGViZ6QAMjQ886vbi3ASEq4wQ1I6thUrd4KEopiRab6bSBIjPER94mjKUUikO5mtNYWnWunBIBL6cAVn6u+JCQqlHIW+7gyRGshFLxX/85xEBZfuhPI4UYTj+UNBwqCKYJoR7FFBsGIjTRAWVP8V4gESCCudZF6HYC+uvExa1YptVey780L9OosjB47BCSgCG1yAOrgFDdAEGDyCZ/AK3own48V4Nz7mrStGNnME/sD4/AGnpJqo</latexit><latexit sha1_base64="nb0Ya5OXLynEy63m+VxQ8PVH0Sw=">AAACFnicbVDLSgMxFM34rPU16tJNsAgt1DLTCroRim5cVrAPmA5DJs20oZnMkGSEtvQr3Pgrblwo4lbc+Tdm2llo64HkHs65l+QeP2ZUKsv6NlZW19Y3NnNb+e2d3b198+CwJaNEYNLEEYtEx0eSMMpJU1HFSCcWBIU+I21/eJP67QciJI34vRrFxA1Rn9OAYqS05JlnQdEZe3YZjr1qetXcEryCTlDUYqkM01rNaq3kembBqlgzwGViZ6QAMjQ886vbi3ASEq4wQ1I6thUrd4KEopiRab6bSBIjPER94mjKUUikO5mtNYWnWunBIBL6cAVn6u+JCQqlHIW+7gyRGshFLxX/85xEBZfuhPI4UYTj+UNBwqCKYJoR7FFBsGIjTRAWVP8V4gESCCudZF6HYC+uvExa1YptVey780L9OosjB47BCSgCG1yAOrgFDdAEGDyCZ/AK3own48V4Nz7mrStGNnME/sD4/AGnpJqo</latexit><latexit sha1_base64="nb0Ya5OXLynEy63m+VxQ8PVH0Sw=">AAACFnicbVDLSgMxFM34rPU16tJNsAgt1DLTCroRim5cVrAPmA5DJs20oZnMkGSEtvQr3Pgrblwo4lbc+Tdm2llo64HkHs65l+QeP2ZUKsv6NlZW19Y3NnNb+e2d3b198+CwJaNEYNLEEYtEx0eSMMpJU1HFSCcWBIU+I21/eJP67QciJI34vRrFxA1Rn9OAYqS05JlnQdEZe3YZjr1qetXcEryCTlDUYqkM01rNaq3kembBqlgzwGViZ6QAMjQ886vbi3ASEq4wQ1I6thUrd4KEopiRab6bSBIjPER94mjKUUikO5mtNYWnWunBIBL6cAVn6u+JCQqlHIW+7gyRGshFLxX/85xEBZfuhPI4UYTj+UNBwqCKYJoR7FFBsGIjTRAWVP8V4gESCCudZF6HYC+uvExa1YptVey780L9OosjB47BCSgCG1yAOrgFDdAEGDyCZ/AK3own48V4Nz7mrStGNnME/sD4/AGnpJqo</latexit>

x 2 Rd
<latexit sha1_base64="r88cLpKiZJtXS/wgD8iCVci7o1w=">AAACBHicbVC7TsMwFL3hWcorwNjFokJiqhKEBANDJRbGguhDakrlOE5r1XEi20FUUQYWfoWFAYRY+Qg2/gan7QAtR7J0fM69uvceP+FMacf5tpaWV1bX1ksb5c2t7Z1de2+/peJUEtokMY9lx8eKciZoUzPNaSeRFEc+p21/dFn47XsqFYvFrR4ntBfhgWAhI1gbqW9XvAjroR9mDznymEDTr5/d5HdB3646NWcCtEjcGanCDI2+/eUFMUkjKjThWKmu6yS6l2GpGeE0L3upogkmIzygXUMFjqjqZZMjcnRklACFsTRPaDRRf3dkOFJqHPmmsthRzXuF+J/XTXV43suYSFJNBZkOClOOdIyKRFDAJCWajw3BRDKzKyJDLDHRJreyCcGdP3mRtE5qrlNzr0+r9YtZHCWowCEcgwtnUIcraEATCDzCM7zCm/VkvVjv1se0dMma9RzAH1ifP+g+mDo=</latexit><latexit sha1_base64="r88cLpKiZJtXS/wgD8iCVci7o1w=">AAACBHicbVC7TsMwFL3hWcorwNjFokJiqhKEBANDJRbGguhDakrlOE5r1XEi20FUUQYWfoWFAYRY+Qg2/gan7QAtR7J0fM69uvceP+FMacf5tpaWV1bX1ksb5c2t7Z1de2+/peJUEtokMY9lx8eKciZoUzPNaSeRFEc+p21/dFn47XsqFYvFrR4ntBfhgWAhI1gbqW9XvAjroR9mDznymEDTr5/d5HdB3646NWcCtEjcGanCDI2+/eUFMUkjKjThWKmu6yS6l2GpGeE0L3upogkmIzygXUMFjqjqZZMjcnRklACFsTRPaDRRf3dkOFJqHPmmsthRzXuF+J/XTXV43suYSFJNBZkOClOOdIyKRFDAJCWajw3BRDKzKyJDLDHRJreyCcGdP3mRtE5qrlNzr0+r9YtZHCWowCEcgwtnUIcraEATCDzCM7zCm/VkvVjv1se0dMma9RzAH1ifP+g+mDo=</latexit><latexit sha1_base64="r88cLpKiZJtXS/wgD8iCVci7o1w=">AAACBHicbVC7TsMwFL3hWcorwNjFokJiqhKEBANDJRbGguhDakrlOE5r1XEi20FUUQYWfoWFAYRY+Qg2/gan7QAtR7J0fM69uvceP+FMacf5tpaWV1bX1ksb5c2t7Z1de2+/peJUEtokMY9lx8eKciZoUzPNaSeRFEc+p21/dFn47XsqFYvFrR4ntBfhgWAhI1gbqW9XvAjroR9mDznymEDTr5/d5HdB3646NWcCtEjcGanCDI2+/eUFMUkjKjThWKmu6yS6l2GpGeE0L3upogkmIzygXUMFjqjqZZMjcnRklACFsTRPaDRRf3dkOFJqHPmmsthRzXuF+J/XTXV43suYSFJNBZkOClOOdIyKRFDAJCWajw3BRDKzKyJDLDHRJreyCcGdP3mRtE5qrlNzr0+r9YtZHCWowCEcgwtnUIcraEATCDzCM7zCm/VkvVjv1se0dMma9RzAH1ifP+g+mDo=</latexit><latexit sha1_base64="r88cLpKiZJtXS/wgD8iCVci7o1w=">AAACBHicbVC7TsMwFL3hWcorwNjFokJiqhKEBANDJRbGguhDakrlOE5r1XEi20FUUQYWfoWFAYRY+Qg2/gan7QAtR7J0fM69uvceP+FMacf5tpaWV1bX1ksb5c2t7Z1de2+/peJUEtokMY9lx8eKciZoUzPNaSeRFEc+p21/dFn47XsqFYvFrR4ntBfhgWAhI1gbqW9XvAjroR9mDznymEDTr5/d5HdB3646NWcCtEjcGanCDI2+/eUFMUkjKjThWKmu6yS6l2GpGeE0L3upogkmIzygXUMFjqjqZZMjcnRklACFsTRPaDRRf3dkOFJqHPmmsthRzXuF+J/XTXV43suYSFJNBZkOClOOdIyKRFDAJCWajw3BRDKzKyJDLDHRJreyCcGdP3mRtE5qrlNzr0+r9YtZHCWowCEcgwtnUIcraEATCDzCM7zCm/VkvVjv1se0dMma9RzAH1ifP+g+mDo=</latexit>

• Hidden layer 1: 
h1 = f(W(1)x+ b(1)) 2 Rd1

<latexit sha1_base64="VM7VTSrhdxVPv8H7p1W7pTPe9Nc="></latexit><latexit sha1_base64="VM7VTSrhdxVPv8H7p1W7pTPe9Nc="></latexit><latexit sha1_base64="VM7VTSrhdxVPv8H7p1W7pTPe9Nc="></latexit><latexit sha1_base64="VM7VTSrhdxVPv8H7p1W7pTPe9Nc="></latexit>

W(1) 2 Rd1⇥d,b(1) 2 Rd1
<latexit sha1_base64="Av+k0GGeUMcXk+fjFFEBVogb7nE=">AAACPnicfVDPS8MwGE3nrzl/TT16CQ5hgoxWBD14GHjxOMVug7WWNE23sDQtSSqM0r/Mi3+DN49ePCji1aPpNkE38UHg8d77yPc9P2FUKtN8MkoLi0vLK+XVytr6xuZWdXunLeNUYGLjmMWi6yNJGOXEVlQx0k0EQZHPSMcfXhR+544ISWN+o0YJcSPU5zSkGCkteVXbiZAa+GHWyW+zunWYQ4dyOBH97FqLgWdBR9GISBjkR/A77/+Tz71qzWyYY8B5Yk1JDUzR8qqPThDjNCJcYYak7FlmotwMCUUxI3nFSSVJEB6iPulpypFex83G5+fwQCsBDGOhH1dwrP6cyFAk5SjydbLYU856hfiX10tVeOZmlCepIhxPPgpTBlUMiy5hQAXBio00QVhQvSvEAyQQVrrxii7Bmj15nrSPG5bZsK5Oas3zaR1lsAf2QR1Y4BQ0wSVoARtgcA+ewSt4Mx6MF+Pd+JhES8Z0Zhf8gvH5BQCyrvw=</latexit><latexit sha1_base64="Av+k0GGeUMcXk+fjFFEBVogb7nE=">AAACPnicfVDPS8MwGE3nrzl/TT16CQ5hgoxWBD14GHjxOMVug7WWNE23sDQtSSqM0r/Mi3+DN49ePCji1aPpNkE38UHg8d77yPc9P2FUKtN8MkoLi0vLK+XVytr6xuZWdXunLeNUYGLjmMWi6yNJGOXEVlQx0k0EQZHPSMcfXhR+544ISWN+o0YJcSPU5zSkGCkteVXbiZAa+GHWyW+zunWYQ4dyOBH97FqLgWdBR9GISBjkR/A77/+Tz71qzWyYY8B5Yk1JDUzR8qqPThDjNCJcYYak7FlmotwMCUUxI3nFSSVJEB6iPulpypFex83G5+fwQCsBDGOhH1dwrP6cyFAk5SjydbLYU856hfiX10tVeOZmlCepIhxPPgpTBlUMiy5hQAXBio00QVhQvSvEAyQQVrrxii7Bmj15nrSPG5bZsK5Oas3zaR1lsAf2QR1Y4BQ0wSVoARtgcA+ewSt4Mx6MF+Pd+JhES8Z0Zhf8gvH5BQCyrvw=</latexit><latexit sha1_base64="Av+k0GGeUMcXk+fjFFEBVogb7nE=">AAACPnicfVDPS8MwGE3nrzl/TT16CQ5hgoxWBD14GHjxOMVug7WWNE23sDQtSSqM0r/Mi3+DN49ePCji1aPpNkE38UHg8d77yPc9P2FUKtN8MkoLi0vLK+XVytr6xuZWdXunLeNUYGLjmMWi6yNJGOXEVlQx0k0EQZHPSMcfXhR+544ISWN+o0YJcSPU5zSkGCkteVXbiZAa+GHWyW+zunWYQ4dyOBH97FqLgWdBR9GISBjkR/A77/+Tz71qzWyYY8B5Yk1JDUzR8qqPThDjNCJcYYak7FlmotwMCUUxI3nFSSVJEB6iPulpypFex83G5+fwQCsBDGOhH1dwrP6cyFAk5SjydbLYU856hfiX10tVeOZmlCepIhxPPgpTBlUMiy5hQAXBio00QVhQvSvEAyQQVrrxii7Bmj15nrSPG5bZsK5Oas3zaR1lsAf2QR1Y4BQ0wSVoARtgcA+ewSt4Mx6MF+Pd+JhES8Z0Zhf8gvH5BQCyrvw=</latexit><latexit sha1_base64="Av+k0GGeUMcXk+fjFFEBVogb7nE=">AAACPnicfVDPS8MwGE3nrzl/TT16CQ5hgoxWBD14GHjxOMVug7WWNE23sDQtSSqM0r/Mi3+DN49ePCji1aPpNkE38UHg8d77yPc9P2FUKtN8MkoLi0vLK+XVytr6xuZWdXunLeNUYGLjmMWi6yNJGOXEVlQx0k0EQZHPSMcfXhR+544ISWN+o0YJcSPU5zSkGCkteVXbiZAa+GHWyW+zunWYQ4dyOBH97FqLgWdBR9GISBjkR/A77/+Tz71qzWyYY8B5Yk1JDUzR8qqPThDjNCJcYYak7FlmotwMCUUxI3nFSSVJEB6iPulpypFex83G5+fwQCsBDGOhH1dwrP6cyFAk5SjydbLYU856hfiX10tVeOZmlCepIhxPPgpTBlUMiy5hQAXBio00QVhQvSvEAyQQVrrxii7Bmj15nrSPG5bZsK5Oas3zaR1lsAf2QR1Y4BQ0wSVoARtgcA+ewSt4Mx6MF+Pd+JhES8Z0Zhf8gvH5BQCyrvw=</latexit>

• Output layer:
<latexit sha1_base64="/yZ+6v25XqYA1TyCtPs/UKHxpi8="></latexit>

y = W(o)h2,W
(o) 2 RC⇥d2

C: number of classes
d: input dimension, : hidden dimensionsd1, d2



Feedforward NNs for multi-class classification
<latexit sha1_base64="/yZ+6v25XqYA1TyCtPs/UKHxpi8="></latexit>

y = W(o)h2,W
(o) 2 RC⇥d2

ŷ = softmax(y) softmax(y)k =
exp(yk)

∑C
j=1 exp(yj)

y = [y1, y2, …, yC]

Training loss: 

 min − ∑
(x,y)∈D

log ŷy
W(1), W(2), W(o)

Training feedforward NNs: 
stochastic gradient descent!

Neural networks are difficult to optimize. 
SGD can only converge to local minimum.

Initializations and optimizers matter a lot!



Back-propagation

Forward step 1: 
Compute h(1)

1 , h(1)
2

y1

y2

y3

ReLU ReLU
x1

x2

x3

h(1)
1

h(1)
2

h(2)
1

h(2)
2

Forward propagation: 
from input to output layer Forward step 2: 

Compute h(2)
1 , h(2)

2
Forward step 3: 
Compute  and y1, y2, y3
[ ̂y1, ̂y2, ̂y3] = softmax[y1, y2, y3]

Forward step 4: 
Compute loss 
L = − log ŷy

Back propagation: 
from output to input layer

Back step 1: 
Compute 

 
∂L
∂y1

,
∂L
∂y2

,
∂L
∂y3

Back step 2: 
Compute 

∂L
∂h(2)

1
,

∂L
∂h(2)

2
,

∂L
∂W(o)

Back step 3: 
Compute 

∂L
∂h(1)

1
,

∂L
∂h(1)

2
,

∂L
∂W(2)

L

Goal: 

, 

, 

∂L
∂W(1)

∂L
∂W(2)

∂L
∂W(o)

Given:   
and the class 

label  
(a single training 

example)

x1, x2, x3

y

Back step 4: 
Compute 

∂L
∂W(1)

W(o)W(2)W(1)



Back-propagation in PyTorch

PyTorch did back-propagation for you in this one line of code!



Comparison: image vs text inputs

label = “dog”

label = positive 
a sometimes tedious film
i had to look away - this was god awful .
a gorgeous , witty , seductive movie .

• Images: fixed-size input, continuous values
• Text: variable-length input, discrete words


• need to convert into vectors - word embeddings!



Neural “bag-of-words” models for 
text classification



Neural networks for text classification
• Input: w1, w2, …, wK ∈ V

• Output: y ∈ C

Solution #1: You can construct a feature vector  from the input and simply feed the 
vector to a neural network, instead of a logistic regression classifier!

x

• 


• 


• 


•  

x = [x1, x2, …, xn]
h = ReLU(Wx + b)
y = Uh
ŷ = softmax(y)

Deep learning has the promise to learn good 
features automatically.. 

• Input: dessert was great

• Output: positive  C = {positive, negative, neutral}



Neural networks for text classification
• How can we feed a variable-length input to a neural network classifier? w1, w2, …, wK ∈ V

Solution #2: Let’s take the all the word embeddings of these words and aggregate them 
into a vector through some pooling function!

pooling: sum, mean or maxxmean =
1
K

K

∑
i=1

e(wi)

• 


• 


• 


•  

x =
1
K

K

∑
i=1

e(wi)

h = ReLU(Wx + b)
y = Uh
ŷ = softmax(y)

Important note: each input has a different K



Neural networks for text classification
• (+): This provides a simple and flexible way to handle variable-length input

• (+): It learns feature representations automatically from the data

• (+): It can generalize to similar inputs through word embeddings

• (-): The model throws away any sequential information of the text
The%Bag%of%Words%Representation
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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neural bag-of-words model (NBOW)



How to train this model?

• 


• 


• 


•  

x =
1
K

K

∑
i=1

e(wi)

h = ReLU(Wx + b)
y = Uh
ŷ = softmax(y)

• Parameters: { }W, b, U
• Optimize these parameters using 

stochastic gradient descent!

• Training data: {(d(1), y(1)), …, (d(m), y(m))}

• Word embeddings can be treated as parameters too!

E ∈ ℝ|V|×d



How to train this model?

• Common practice: initialize  using word embeddings 
(e.g. word2vec), and optimize them using SGD!  

E
Why? v(good) ≈ v(bad)

• When the training data is small, don’t treat 
 as parameters!E

• When the training data is very large (e.g., language 
modeling), initialization doesn’t matter much either 
(= can use random initialization)

(Kim 2014)



Feedforward neural language models



N-gram vs neural language models

Language models:  Given , the goal is to model:
x1, x2, …, xn ∈ V

P(x1, x2, …, xn) =
n

∏
i=1

P(xi ∣ x1, …, xi−1)

Bigram: 

Trigram:

P(x1, x2, …, xn) =
n

∏
i=1

P(xi ∣ xi−1)

P(x1, x2, …, xn) =
n

∏
i=1

P(xi ∣ xi−2, xi−1) P (sat|the cat) =
count(the cat sat)

count(the cat)

Maximum likelihood estimate:

Limitations? Can’t handle long histories!

the students opened their ______As the proctor started the clock, 
The keys to the cabinet is/are



N-gram vs neural language models

• If we use a 4-gram, 5-gram, 6-gram language model, it will become too sparse to 
estimate the probabilities:

<latexit sha1_base64="HKgtSI2iemEZBK5gecf7UDq34pA="></latexit>

P (w | students opened their) =
count(students opened their w)

count(students opened their)

Dilemma:  

• We need to model bigger context!


• The # of probabilities that we need 
to estimate grow exponentially with 
window size!

• A lot of contexts are similar and simply 
counting them won’t generalize

I am a good ______ 

I am a great ______ 
count(I am a good w)


count(I am a great w)


e(good)  e(great)≈

Can we estimate the probabilities better?



(Bengio et al., 2003)

https://awards.acm.org/about/2018-turing

Feedforward neural language models



Feedforward neural language models
(Bengio et al., 2003)

Key idea: Instead of estimating raw probabilities, let’s use a 
neural network to fit the probabilistic distribution of language!

P(w ∣ I am a good)

P(w ∣ I am a great)

e(good)  e(great)≈Key ingredient: word embeddings
Hope: this would give us similar distributions for similar contexts!



the

cat

sat

on

the

<latexit sha1_base64="+Q08gB7+H9GhEuiXWo5dVrQSwEk=">AAAB9XicbVDLSsNAFL2pr1pfUZduBovgqiQi6rLoxmUV+4A2LZPppB06mYSZiVJC/sONC0Xc+i/u/BsnbRbaemDgcM693DPHjzlT2nG+rdLK6tr6RnmzsrW9s7tn7x+0VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO1PbnK//UilYpF40NOYeiEeCRYwgrWR+r0Q67Hvp/dZPx1nA7vq1JwZ0DJxC1KFAo2B/dUbRiQJqdCEY6W6rhNrL8VSM8JpVuklisaYTPCIdg0VOKTKS2epM3RilCEKImme0Gim/t5IcajUNPTNZJ5SLXq5+J/XTXRw5aVMxImmgswPBQlHOkJ5BWjIJCWaTw3BRDKTFZExlphoU1TFlOAufnmZtM5q7kXNuTuv1q+LOspwBMdwCi5cQh1uoQFNICDhGV7hzXqyXqx362M+WrKKnUP4A+vzBwnlkt0=</latexit>
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P (w = i)?
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R5d
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Rd

Feedforward neural language models

P(mat | the cat sat on the) = ?

• Feedforward neural language models approximate the probability based 
on the previous m (e.g., 5) words - m is a hyper-parameter!

P(x1, x2, …, xn) ≈
n

∏
i=1

P(xi ∣ xi−m+1, …, xi−1)

d:  word embedding size

h:  hidden size

It is a |V|-way classification problem!
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P (w = i)?
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Rd

Feedforward neural language models
P(mat | the cat sat on the) = ? d:  word embedding size h:  hidden size

• Output layer
z = Uh 2 R|V |
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P (w = i | the cat sat on the)

= softmaxi(z) =
eziP
k e

zk

• Input layer (m= 5):
x = [e(the); e(cat); e(sat); e(on); e(the)] ∈ ℝmd

• Hidden layer:
h = tanh(Wx + b) ∈ ℝh

Q: why concat instead of 
taking the average?



Feedforward neural language models

• How to train this model? A: Use a lot of raw text to create training 
examples and run gradient-descent optimization!

•  linearly scales with the context size mW
• The models learns separate patterns 

for different positions!

The Fat Cat Sat on the Mat is a 1996 
children's book by Nurit Karlin. Published by 
Harper Collins as part of the reading 
readiness program, the book stresses the 
ability to read words of specific structure, 
such as -at.

the fat cat sat on  the→
fat cat sat on the  mat→
cat sat on the mat  is→
sat on the mat is  a→
…

• Limitations?
the fat cat sat on  the→
fat cat sat on the  mat→
cat sat on the mat  is→

“sat on” corresponds to 
different parameters in W• Better solutions: recurrent NNs, Transformers..


