COS 484: Natural Language Processing

L3: Word Embeddings
Spring 2026

(Some slides are adapted from Dan Jurafsky)

Announcements

- A1 will be released today

 Deadline in two weeks

* Precepts : Fri 12-1pm, FC 004

How do we represent words in NLP models!?

* N-gram models

P(wy,ws, ...w

P(wi\wi_l) —

e Nalve Bayes

A

P(w; | ¢j) =

n) = HP(w7;|wz-_1)

C(wi—la wz) -+
C(wi_1)+ Oé‘V‘

Count(w;, c;)|+ «

ZwEV Count(w, c;) + a|V|

Each word is just a string

or indices w; in the
vocabulary list

cat = the 5th word in V
dog = the 10th word in V
cats = the 118th word in V

VVhat are some issues with representing
words in these ways!

Need for word meaning in NLP models

- With words, a feature is a word identity (= string)

e Feature 5: The previous word was “terrible
* Requires exact same word to be in the training and testing set

“terrible” = “horrible”

e |f we can represent word meaning in vectors:

e The previous word was vector [35, 22, 17, ...]
e Now in the test set we might see a similar vector [34, 21, 14, ...]

* We can generalize to similar but unseen words!!!

Guess the meaning of “Ongchoi”

» Ongchoi is delicious sauteed with garlic
» Ongchoi is superb over rice
» Ongchoi leaves with salty sauces

Q: What do you think ‘Ongchoi’ means?
(A) a savory snhack (B) a green vegetable.
(C) an alcoholic beverage (D) a cooking sauce

Guess the meaning of Ongchoi

“Ongchoi”

Ongchoi is a leafty green like spinach, chard or collard greens

5, vy
rzo

kangkong
rau mudng

How can we do the same thing computationally?

e Count the words in the context of ongchol

e See what other words occur in those contexts

We can represent a word’s context using vectors!

Distributional hypothesis

D

i
; g!i_“‘hl

e e
:| L ¥, i X
(Hi i i — 3 : el X
il " = = | S z 3 “"H“-. i
i = 1=
st : B
i 1t i f'll e i =EEE
R ining =EE0E E= . i
i B g:f::*:dg } s i 1 4 2 : == = L3 2
-) ‘;‘uw“‘ i 3

i
.ﬂ? i

- “The meaning of a word is its use in the language [Wittgenstein Pl 43]

e “|If A and B have almost identical environments we [Harris 1954]
say that they are synonyms.”

e “You shall know a word by the company it keeps” [Firth 1957]

Words and vectors

First solution: Let’s use word-word co-occurrence counts to
represent the meaning of words!

Each word is represented by the corresponding row vector

context words: 1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
4 words 1o the I_eft " computer peripherals and personal digital assistants. These devices usually
4 words to the right a computer. This includes information available on the internet
aardvark ... computer data result pie sugar
cherry 0 2 8 2 442 25
strawberry 0 0 0 1 60 19
digital 0 1670 1683 85 5 4
information 0 3325 3982 378 S 13

Most entries are 0s — sparse vectors

Measuring similarity

A common similarity metric: cosine of the
angle between the two vectors (the larger,

4000— Y
= nformation the more similar the two vectors are)
= 3000— [3982,3325]
Q. digital
& 2000—/1683,1670] u-v
o cos(u,v) =
O . n0— [ua|||v]
U
L S:L_'l U; V;
1000 2000 3000 4000 COS(ua V) — v v
2 2
data \/Zz’:l Wi \/21—1 Vi

Q: Why cosine similarity instead of dot product u - v?

Measuring similarity m

What is the range of cos(u, v) if u, v are count vectors?

g ;)1 1]] cos(u,v) = L it
s v %

©) (0, 1) \/Z‘ ' \/El'

(D) (-1, 1)

(E) (— 00, +00)

The answer is (b). Cosine similarity ranges between -1 and 1 in general. In this model,
all the values of u;, v; are non-negative.

Any issues with this model?

- Raw frequency count is a bad representation!

» Frequency is clearly useful; if “pie” appears a lot near “cherry”, that's
useful information.

» But overly frequent words like “the”, “it", or “they” also appear a lot near
“cherry”. They are not very informative about the context.

» Solution: use a weighted function instead of raw counts!

Using a weighted function: PMI

» Solution: use a weighted function instead of raw counts!
» Pointwise Mutual Information (PMI):
» Do events x and y co-occur more or less than if they were independent?

P(x,y)

PMI(x, y) = log, —P(x)P(y)

» As an example,

» Does “pie” occur more often than we’d expect near “cherry”?
P(w = cherry, ¢ = pie)

PMI(w = cherry, ¢ = pie) = log, m

(compute P using MLE)

Sparse vs dense vectors

 The vectors in the word-word occurrence matrix are
- Long: vocabulary size
« Sparse: most are 0’s

 Alternative: we want to represent words as short (50-300 dimensional) &
dense (real-valued) vectors

» This is the basis for modern NLP systems!

—0.224 —0.124).234 0.290
0.130 0.430).266 0.441
Yeat = | _0.290 Udog = | _().200 Uthe = | 939 Vlanguage = | () 769

0.276 0.329 —0.199 0.982

Why dense vectors!

» Short vectors are easier to use as features in ML systems
» Dense vectors may generalize better than explicit counts
» Sparse count vectors can’t capture high-order co-occurrence

* W; co-occurs with “car”, w, co-occurs with "automobile”

» They should be similar but they aren’t because “car” and “automobile”
are distinct dimensions

 |In practice, dense vectors work better!

How to get short dense vectors!

» Count-based methods: Singular value
decomposition (SVD) of count matrix

O1 0O 0 .
0 (02)) 0 .
%% O O O3
10 0 O
V| x|V V| x |V]
1Tor 0 0 0
0 oo O 0
1% 0 0 o3 0
1100 0 O Oy,
V| xk kX k

Singular value decomposition (SVD) of
PPMI weighted co-occurrence matrix

embedding T 7
for
word | —
|44
VIxk

We can approximate the full
matrix by only keeping the top
k (e.g., 100) singular values!

How to get short dense vectors!

* Prediction-based methods:

e \ectors are created by training a classifier to

predICt whether a word (PIe) IS Ilkely to Don’t count, predict! A systematic comparison of
appear in the context of a word w (“cherry”) context-counting vs. context-predicting semantic vectors

® Exam p|eSZ WO rd2veC (M | kOIOV et al .y 201 3), Marco Baroni ?nd Ggorgi?na Dinu .and Germén Kruszewski
G I ove (P enn | N gt on et al N 2 01 4), F 3 StTeXt Center for Mind/Brain Sciences (University of Trento, Italy)
(Bojanowski et al., 2017) (Baroni et al., 2014)

Also called word embeddings!

Word2vec and other variants

VWord embeddings

» Basic property: similar words have similar vectors

word w*= “sweden”

arg max cos(e(w), e(w™))

,,,,,,,,,,,

norway
denmark
finland
switzerland
belgium
netherlands
iceland
estonia
slovenia

Cosine distance

. 760124
115460
.620022
.088132
. 285835
.274631
. 062368
. 047621
.031408

S ®

cos(u, v) ranges between -1 and 1

VWWord embeddings: the learning problem

Learning vectors from text for representing words

* Input: —0.224 —0.124
0.130 | 0.430
- alarge text corpus, Yeat = | _(990 fdog = | _0.200
0.329

- vocabulary V 0.276
- vector dimension d (e.g., 300) 0.234 0.290
0.266 —0.441
OUtPUt:f: V — Rd Uthe — 0239 Ulanguage — 0.762
—0.199 0.982

Note: Each coordinate/dimension of the vector doesn’t have a particular interpretation

word2vec

- (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

- (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their

/ INPUT PROJECTION OUTPUT \

Compositionality

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

>‘ w(t)

w(t+1)

Tomas Mikolov wi(t+2)

Continuous Bag of Words (CBOW)

w(t)

_

—>

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Skip-gram

Skip-gram

- Assume that we have a large corpus w, W,, ..., wr € V - A classification
problem!

- Key idea: Use each word to predict other words in its context

- Context: a fixed window of size 2m (m = 2 in the example)

P(b | a) = given the center word

is a, what is the probability that b
P(we_q | we) P(Weyq | We) IS a context word?

P(We_z | we) PWeyo | W)

P(- | a) is a probability

problems turning SN b _
distribution defined over V:

banking crises as

L) \) 1 J

1 1 || S
outside context words center word outside context words 2 l, P(W ‘ Cl) =1
in window of size 2 at position t in window of size 2 wevV

We are going to define
this distribution soon!

Skip-gram

P(We_s | W) PWesz | We) Convert into training data:
POve-s [we) N\ /P | w0 (into, problems)
problems turning banking crises as .. (I ﬂtO, turni ng)
outside c;ntext words cent;r word outside co'ntext words (I ntO’ ban kl ng)
in window of size 2 at positiont in window of size 2 (| nto C”SeS)

(banking, turning)
(banking, into)
(banking, crises)
(banking, as)

PWe_z | we) PWeyo | W)

P(We—q | we) P(Wey1 | we)

problems turning into crises as

| J \ J
|| Y |

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Our goal is to find parameters that can maximize

P(problems | into) X P(turning | into) X P(banking | into) X P(crises | into) X

P(turning | banking) X P(into | banking) X P(crises | banking) X P(as | banking)...

Skip-gram: objective function

For each position t = 1,2,...T, predict context words within context size m, given center word

T
=[]l Il Plwj|ws;6)
t=1

—m<j<m,j#0

all the parameters to

W.. O
J be optimized

It is equivalent to minimizing the (average) negative log likelihood:

1
J(0) = —7 log L(6 Z Z log P(wiy | we; 0)

t 1 —m<53<m,j7#0

How to define P(w,,; | w; 0)!

- Use two sets of vectors for each word in the vocabulary

u, € R? : vector for center word a,Va € V
v, € R? : vector for context word b, Vb € V

- Use inner product u, - v, to measure how likely word a appears with context word b

CXP (“wt | Vwm-) Does this term

seem familiar?
zkev e (uWr ' Vk)

P(Wt+j ‘ Wt) —

... VS multinominal logistic regression

Essentially a |V|-way classification problem

Recall: multinomial logistic regression:

exp(w, - X+ 0b,)

P(y=c|x) =

Z;ZIGXP(W]' - X+ b))

Itwe fixu,, , itis reduced to a multinomial
logistic regression problem.

However, since we have to learn both u and v
together, the training objective is non-convex.

... VS multinominal logistic regression

“convex” ‘ “non-convex”

 |tis hard to find a global minimum

- But can still use stochastic gradient descent to optimize 6:

AUFD =) — v, ()

Important note

J(0) = — 1 Z Z lo exXP(Uw, * Vu,.,)

T S
1 eXPl\WUy, * Vi
= —m<jmizo Skev XP(Uuw, Vi)

In this formulation, we don’t care about the classification task itself like we do for the logistic
regression model we saw previously.

Instead, the parameters (vectors) that optimize the training objective end up being very good
word representations!

How many parameters in this model? m

How many parameters does this model have (i.e. what is size of 6)?

J(0) = —%Z > o eXP(Uu, * Vus;)

g
t=1 —m<j<m,j#0 2 ke XP(Ww, - Vi)

(a) d|V| V := Vocabulary

d := dimension of embedding
(b) 2d| V|
(c) 2m|V| m .= size of context window
(d) 2md|V|

The answer is (b).
Each word has two d-dimensional vectors, soitis2 X | V| X d.

word2vec formulation

log
A0 ZkEV CXp(uLUt Vk)

1 d CXp(uwt th+g)

m<)

Q: Why do we need two vectors for each word?

- Because one word is not likely to appear in its own context window, e.g., P(dog | dog)

should be low. It we use one set of vectors only, it essentially needs to minimize Ugpqg * Ugeg

Q: Which set of vectors are used as word embeddings?

- This is an empirical question. Typically just u,, but you can also concatenate the two vectors..

How to train this model!?

T
_ _i Z Z 10 exp(uwt th+3)
L t=1 —m<j53<m,3#0 ZKEV eXp(uwt Vk)
- To train such a model, we need to compute the C Vaardvark
vector gradient V,J(0) = Vq
- Remember that @ represents all 2d | V| model g _ | Vzebra
parameters, in one vector. Za,ardvark;
_ Uzebra i

Vectorized gradients

f(x)=x-a of _

Rn &—a

X,a c.

f =x1a1 + 2202 + ...+ THan,

of _of of of

Ox [6’x1’ (%2’”"(%”]

Vectorized gradients: exercises

of

Let f = exp(W - X), what is the value of a—’? (Assume w, X € R")
X

(a) W

(b) exp(w - X)
(c) exp(w - X)W
(d) x

The answer is (c).

OX; OX;

l l

p exp(Y wx) n
— = = = exp() wix)w

Let’s compute gradients for word2vec

T
1 2 : 2 : eXp(u’wt " Vay j)
J(@) = —? lo T
t=1

&
—m<j3<m,j#0 Zk'GV exp(uwt . Vk')

Consider one pair of center/context words (, ¢):

—] (exp(uy - v)) Here, t = target, c = context
Yy = —1og
D _kev €xXp(ue - vi)

We need to compute the gradient of y with respect to

wandv,, VkeV

Let’s compute gradients for word2vec

(exp(uy - V)) Oy _ O(—uy-ve) 9Oog) jecy exp(uy - vy))
y _— — log P I
Zke\/ exp(ut - Vk) ouy ouy ouy
0 pey exp(ug-vg)
— v I 8ut
y = —log(exp(u; - v)) + log(z exp(uy - vi)) ‘ D kev exp(ug - vi)
keV
= —w; - Ve + log(z exp(us - vi))

keV

Recall that

exp(Wy, * Vi, +j)

ZkEV eXp(uwt ' Vk) = —V, + Z P(k | t)Vk

Plwiyj | we) =

Gradients for word2vec

What about context vectors?

dy {(P(k:t)l)ut k=c y:_log(exp(u; - ve))

OV, Pk | t)u k + c > _key €xp(ug - vi)

See assignment 2 :)

Overall algorithm

Input: text corpus, embedding size d, vocabulary V, context size m
Initialize w,, v; randomly Vi € V

Run through the training corpus and for each training instance (t, c):

oy 0y

~ Update u, < u, ———; = —V,.+ P(k|t)v,
ou, oJu, g:‘/
oy oy (Pklt)y—Dua, k=c
Update v, « v — VkeV, —=
. VP k k n&vk ov, {P(k\t)ut k#c

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update v, with all the words in the

vocabulary! This is very expensive computationally.

Jy Jy {(P(k\t)—l) u k=c

— =—v.+) Pklyyv, ; — =
ou,) kezv SR ov;,, P(k|t) u, k# c

Negative sampling: instead of considering all the words in V, let’'s randomly sample K (5-20)

negative examples. |

.

(exp (1, v,) CRe
Softmax: y = — log _
ZkEV CXPp (ut . Vk) |

K

Negative sampling: y = — log (a(ut - VC)) — Z =i p(w) 108 (0(—ut : Vj))

0.5+

=1 -6 -4 =2 0 2 4

Skip-gram with negative sampling (SGNS)

Key idea: Convert the | V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, ¢), we don’t predict c among all the words in the vocabulary.
Instead, we predict (t, ¢) is a positive pair, and (t, ¢’) is a negative pair for a small number of

sampled c’.

positive examples +
(C

apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -

t C t C
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot 1if

y=—1lo

O

K
(o(ug - ve)) — ZE]'NP(u') log(o(—uy - v;))
i=1

P(w): sampling according to
the frequency of words

Similar to binary logistic regression, but we need to optimize u and v together.

Ply=1|t,c)=o0c(us - ve)

ply=0|t,d)=1—0c(w;-ve) =0c(—u; - ve)

Understanding SGNS

In skip-gram with negative sampling (SGNS), how many parameters need to be updated in &
for every (t, c) pair?

K
y = —log(o(us - ve)) — Z LinP(w) l0g(o(—uy - v;))
i=1

(a) Kd

(b) 2Kd

(c) (K+ 1)d
(d) (K+2)d

The answer is (d).

We need to calculate gradients with respect tou, and (K + 1) v;

(one positive and K negatives).

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

wity ——»

\ w(t+1)
w(t+2)

Skip-gram

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

L el w

w(t+1)

w(t+2)

Continuous Bag of Words (CBOW)

T
Hp(wt H{wigs},—m < j <m,j #0)

h
—~
O
~—
|

}) L eXp(u’wt . _,t)
! Zkev exp(ug - Vi)

Trained word embeddings available

e word2vec: https://code.google.com/archive/p/word2avec/

e GloVe: https://nlp.stanford.edu/projects/glove/

e FastText: https://fasttext.cc/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License v1.0 whose full text can be found at:
http:.//www.opendatacommons.org/licenses/pddl/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
o Common Crawl (42B tokens, 19M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
o Iwitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove twitter278.zip

« Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Evaluating word embeddings

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

Let’s plug these word embeddings into a real NLP system and see

f
whether this improves performance [ML model]
Could take a long time but still the most important evaluation metric (_0(')?’218> <_°('fgll> (éﬁ;) (:3};) (}ié)
. . f ot ! !
Intrinsic evaluation I dont like
Evaluate on a specific/intermediate subtask

this movie
- Fast to compute

Not clear if it really helps downstream tasks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353: 353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

mmmmm
tiger 7.35

tiger tlger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

A — . —

u; - ’U,]'

COSlUu;.Uu;) = .
(%) = Tl w12

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 56.5 71.5 71.0 53.6 34.7
SVD-LL 6B | 65.7 727 75.1 56.5 37.0
CBOW' 6B | 572 65.6 682 57.0 325
SG" 6B | 628 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-LL 42B | 740 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 59.4 455

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy test: a : a* :: b : b*

b* = arg max cos(e(w),e(a™) —e(a) + e(b))

semantic syntactic

Chicago:lllinois~Philadelphia: ? bad:worst & cool: ?

More examples at
http://download.tensorflow.org/data/questions-words.txt

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 53.2
HPCA 100 1.6B | 42 164 10.8
GloVe 100 1.6B | 67.5 54.3 60.3
SG 300 1B 61 61 61
CBOW 300 1.6B | 16.1 52.6 36.1
vLBL 300 15B | 542 64.8 60.0
ivLBL 300 15B | 65.2 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3
SVD-S 300 6B | 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW' 300 6B | 63.6 674 65.7
SGT 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 670 717
CBOW 1000 6B 573 689 63.7
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 58.2 49.2
GloVe 300 42B | 819 69.3 75.0

Metric: accuracy

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word embeddings

* They have some other nice properties too!

Germany —_—
man walked Berlin
O O Turkey \
. ~~~~~~* S Ankara
king . ‘ O S Russia Moscow
N :L. walking O Canada Ottawa
queen Japan Tokyo
il O e Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital
] [J >I< [I J [J >x<
S S . —_—
Uman — Uwoman ~ Uking — Uqueen Word analogy test: a : a® :: b : b

X

URome — Ultaly b* = argmax cos(e(w), e(a”) — e(a) + e(b))

UParis — UFrance et

Word embeddings

* They have some other nice properties too!

fol
Ouno (one
nco (fiv
{ (thre
OQgos (two)
v(cuatro) ~ Wu(four) | P — Qe b
O caballo (horse)
Jvadca (COW)
pergp (dog)
}
O cerdo (pig)
gato (cat)

(Mikolov et al, 2013): Exploiting Similarities among Languages for Machine Translation

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data
b

a . 9ay (1900s)
launtn :
reful L
plea
_l'f "I:l?

Wil gay (1950s)

prignt

gay (19905 R

!
l |

Al |

bbc

broadcast (1850s).., :-;: ow

broadcast (1900s)
Nnewspapers

broadcaéi (1990s)

gy (1 900s)

solemn
awful (1850s)

ll'l

\awful (1990s)
| I 1 U

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Tul

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurlPS, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
o X =Japan

Ask “father : doctor :: mother : x”
° X =nurse

Ask “man : computer programmer :: woman : x”
> X = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

