
COS 484: Natural Language Processing

L2: n-gram Language Models

Spring 2025

Announcements / set up

• Join iClicker! We’re going to have some in-class
polls today

• HW0 due next Monday, 1:59pm

• Office hours + locations are now available on the
website

Lecture plan

• What is an n-gram language model?

• Generating from a language model

• Evaluating a language model (perplexity)

• Smoothing: additive, interpolation, discounting

Recommended reading:  
JM3 3.1-3.5

What is a language model?
• A probabilistic model of a sequence of words

• Joint probability distribution of words : w1, w2, …, wn

P (w1, w2, w3, ..., wn)

How likely is a given
phrase, sentence,
paragraph or even a
document?

Chain rule

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat”

Conditional probability:  
p(w ∣ w1, w2), ∀w ∈ V

Implicit order

<latexit sha1_base64="ZmA+AYSbITSw+/HLlyERAe+qZfo=">AAACb3icbVHPS+wwEE6rPnWf77nqwYPyGFwEC7q0q6gXQfTiUcFVYbuUNM1qME1LMlWWslf/QG/+D178D0zrKv54A0m++b6ZzGQS51IY9P0nx52YnPo1PTPb+D335+98c2HxwmSFZrzLMpnpq5gaLoXiXRQo+VWuOU1jyS/j2+NKv7zj2ohMneMw5/2UXisxEIyipaLmQ75xHwWbcB91qm17E0KZZGgqR3lwALXu1UcHwlQk8OFvf/h1vgchipQbCFl1w7tXRaqvkZ+LlGorGHlRs+W3/drgJwjGoEXGdho1H8MkY0XKFTJJjekFfo79kmoUTPJRIywMzym7pde8Z6GitpV+Wc9rBOuWSWCQabsUQs1+zihpaswwjW1kSvHGfNcq8n9ar8DBfr8UKi+QK/ZWaFBIwAyq4UMiNGcohxZQpoXtFdgN1ZSh/aKGHULw/ck/wUWnHey2d852WodH43HMkBWyRjZIQPbIITkhp6RLGHl2Fp0VZ9V5cZfdfy68hbrOOGeJfDHXewU6MLTL</latexit>

p(w1, w2, w3, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)⇥ · · ·⇥ p(wn | w1, w2, . . . , wn�1)
<latexit sha1_base64="ZmA+AYSbITSw+/HLlyERAe+qZfo=">AAACb3icbVHPS+wwEE6rPnWf77nqwYPyGFwEC7q0q6gXQfTiUcFVYbuUNM1qME1LMlWWslf/QG/+D178D0zrKv54A0m++b6ZzGQS51IY9P0nx52YnPo1PTPb+D335+98c2HxwmSFZrzLMpnpq5gaLoXiXRQo+VWuOU1jyS/j2+NKv7zj2ohMneMw5/2UXisxEIyipaLmQ75xHwWbcB91qm17E0KZZGgqR3lwALXu1UcHwlQk8OFvf/h1vgchipQbCFl1w7tXRaqvkZ+LlGorGHlRs+W3/drgJwjGoEXGdho1H8MkY0XKFTJJjekFfo79kmoUTPJRIywMzym7pde8Z6GitpV+Wc9rBOuWSWCQabsUQs1+zihpaswwjW1kSvHGfNcq8n9ar8DBfr8UKi+QK/ZWaFBIwAyq4UMiNGcohxZQpoXtFdgN1ZSh/aKGHULw/ck/wUWnHey2d852WodH43HMkBWyRjZIQPbIITkhp6RLGHl2Fp0VZ9V5cZfdfy68hbrOOGeJfDHXewU6MLTL</latexit>

p(w1, w2, w3, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)⇥ · · ·⇥ p(wn | w1, w2, . . . , wn�1)

Language models are everywhere

Estimating probabilities

Assume we have a vocabulary of size , 
how many sequences of length do we have? 
A)  
B)  
C)  
D)

V
n

n * V
nV

Vn

V/n

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat) Maximum
likelihood
estimate

(MLE)

Estimating probabilities

• With a vocabulary of size V, # sequences of length n =

• Typical English vocabulary ~ 40k words

• Even sentences of length results in more than sequences.
Too many to count!

• (For reference, # of atoms in the earth)

Vn

≤ 11 4 × 1050

∼ 1050

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

Markov assumption
• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in exchange for modeling
capacity

• 1st order

• 2nd order
P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)

Andrey Markov

kth order Markov

Consider only the last k words (or less) for context which implies the
probability of a sequence is:

Need to estimate counts for up to (k+1) grams

(assume)wj = ϕ ∀j < 0

n-gram models

P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model  
(but also higher costs)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

Caveat: Assuming infinite data!

e.g. P(the) P(cat) P(sat)

e.g. P(the) P(cat | the) P(sat | cat)

Estimating probabilities

Consider the following corpus

<s> I like apples </s>

<s> You like strawberries </s>

<s> You like apples </s>

What’s the bigram probability P(apples | like) ?

(A) 1/3 (B) 2/3 (C) 1/2 (D) 1

Note: <s> and </s> are
starting and ending tokens

Estimating probabilities

Consider the following corpus

<s> I like apples </s>

<s> You like strawberries </s>

<s> You like apples </s>

What’s the bigram probability P(apples | like) ?

(A) 1/3 (B) 2/3 (C) 1/2 (D) 1

P(apples | like) =
Count("like apples")

Count("like")
=

2
3

Note: <s> and </s> are
starting and ending tokens

Estimating probabilities

Consider the following corpus

<s> I like apples </s>

<s> You like strawberries </s>

<s> You like apples </s>

Using the bigram model, what’s the probability of the sentence “<s> I like
strawberries </s>”? Ignore the probability of <s>.

(A) 4/9 (B) 1/3 (C) 2/9 (D) 1/9

Note: <s> and </s> are
starting and ending tokens

Estimating probabilities

Consider the following corpus

<s> I like apples </s>

<s> You like strawberries </s>

<s> You like apples </s>

Using the bigram model, what’s the probability of the sentence “<s> I like
strawberries </s>”? Ignore the probability of <s>.

(A) 4/9 (B) 1/3 (C) 2/9 (D) 1/9

P(<s> I like strawberries </s>) =
1
3

⋅ 1 ⋅
1
3

⋅ 1

Note: <s> and </s> are
starting and ending tokens

Generating from a language model

Generating from a language model
• Given a language model, how to generate a sequence?

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

• Generate the first word w1 ∼ P(w)
• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w2)
• …

Generating from a language model
• Given a language model, how to generate a sequence?

Trigram

• Generate the first word w1 ∼ P(w)
• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w1, w2)

• Generate the fourth word w4 ∼ P(w ∣ w2, w3)

• …

<latexit sha1_base64="YbbLxwhYWxt4tmuJmgD1SHDIrZw=">AAACMHicbVBLSwMxGMzWV62vqkcvwSJUqGW3iHoRih70WME+oFuXbDZtg9lkSbJKWfYnefGn6EVBEa/+CrNtD1odCExm5iP5xo8YVdq2X63c3PzC4lJ+ubCyura+UdzcaikRS0yaWDAhOz5ShFFOmppqRjqRJCj0GWn7t+eZ374jUlHBr/UoIr0QDTjtU4y0kbziRaN87zkVeO/VKtBlgdAqu/B9eArdSIrAS+ipk94kPIVZlEI3pIFJJPSgllYmxEn3vWLJrtpjwL/EmZISmKLhFZ/cQOA4JFxjhpTqOnakewmSmmJG0oIbKxIhfIsGpGsoRyFRvWS8cAr3jBLAvpDmcA3H6s+JBIVKjULfJEOkh2rWy8T/vG6s+ye9hPIo1oTjyUP9mEEtYNYeDKgkWLORIQhLav4K8RBJhLXpuGBKcGZX/ktatapzVD28OizVz6Z15MEO2AVl4IBjUAeXoAGaAIMH8AzewLv1aL1YH9bnJJqzpjPb4Besr28O5qah</latexit>

P (w1, w2, . . . , wn) =
nY

i=1

P (wi | wi�2, wi�1)

Generations

- To him swallowed confess hear both. Which. Of save on
trail for are ay device and rote life have

Unigram

- Why dost stand forth thy canopy, forsooth; he is this palpable
hit the King Henry. Live king. Follow.

- What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

- Fly, and will rid me these news of price. Therefore the
sadness of parting, as they say,

- This shall forbid it should be branded, if renown made it
empty

Trigram

“The woman/man could not go to work that day
because she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies

Generations

With the start of the new academic year, Princeton has an opportunity to help provide a new
generation of women with a diverse set of academic resources for higher education.
We are offering the resources of the Princeton-McGill program specifically to women with
undergraduate degrees who would like to enhance their academic experience. Princeton-McGill
offers a comprehensive suite of services for women and their families including a variety of graduate
programs, support programs, and the opportunity to serve as leaders in their communities with a
wide variety of programs, activities and services. For the upcoming fall, Princeton-McGill will also
offer its Women's Center , which is located in a renovated women's dorm.
At Princeton, we are working with the Princeton-McGill community to develop a suite of programs
that are designed to give new and returning students a strong foundation for a successful, rewarding
graduate career. The Women's Center , the Princeton-McGill Women's Center provides a range of
supports to address the specific needs of female doctoral degree graduates. Programs are tailored to
meet the unique needs of women under the age of 28, women and families

https://talktotransformer.com/

Example from a GPT-2 output (2019): prompt aka. conditional context

Modern LMs can handle much longer contexts!

<latexit sha1_base64="+rav88ruzOQUiarUZfGToc+P77c=">AAACRHicbVBLSwMxGMz6rPVV9eglWAQFLZtS1Euh6MVjBdsK3bpks6kGs8mSZJWy7I/z4g/w5i/w4kERr2K23YOvgcBkvhm+ZIKYM21c98mZmp6ZnZsvLZQXl5ZXVitr610tE0Voh0gu1UWANeVM0I5hhtOLWFEcBZz2gpuTfN67pUozKc7NKKaDCF8JNmQEGyv5lX57585He/DOr+9Bj4fS6PwidmETerGSoZ+yJsouU5HB3MqgF7HQOlK2j9x6I/ueslo9KwjKdv1K1a25Y8C/BBWkCgq0/cqjF0qSRFQYwrHWfeTGZpBiZRjhNCt7iaYxJjf4ivYtFTiiepCOS8jgtlVCOJTKHmHgWP2eSHGk9SgKrDPC5lr/nuXif7N+YoZHg5SJODFUkMmiYcKhkTBvFIZMUWL4yBJMFLNvheQaK0yM7b1sS0C/v/yXdOs1dFBrnDWqreOijhLYBFtgByBwCFrgFLRBBxBwD57BK3hzHpwX5935mFinnCKzAX7A+fwCh0Ctrg==</latexit>

P (w1, w2, . . . , wn) =
nY

i=1

P (wi | wi�1024, . . . , wi�2, wi�1)

https://talktotransformer.com/

Generation methods (advanced)

• Greedy: choose the most likely word!

• To predict the next word given a context of two words :

• Top-k vs top-p sampling: “The boy went to the _______”

w1, w2

w3 = arg max
w∈V

P(w |w1, w2)

https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3

Top-p samplingTop-k sampling

Evaluating a language model

Extrinsic evaluation

• Train LM apply to task observe accuracy

• Directly optimized for downstream applications

• higher task accuracy better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

→ →

→

Language
model

Machine
Translation Eval

refine

Intrinsic evaluation of language models

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• If a language model assigns a higher probability to the test
set, it is better

• Evaluation metric - perplexity!

Motivation: Shannon game

Goal for language models: model or
 well.  

 
Shannon game: How well can we predict the next word?
• I always order pizza with cheese and ____
• The 33rd president of the US was ____
• I saw a ____

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

(Slide credit: COS324, Ruth Fong)

Goal for language models: model or
 well.  

 
Shannon game: How well can we predict the next word?
• I always order pizza with cheese and ____
• The 33rd president of the US was ____
• I saw a ____

How would a unigram model do?

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
…
friend rice 0.0001
…

Motivation: Shannon game

(Slide credit: COS324, Ruth Fong)

Motivation: Shannon game

Goal for language models: model or
 well.  

 
Shannon game: How well can we predict the next word?
• I always order pizza with cheese and ____
• The 33rd president of the US was ____
• I saw a ____

How would a unigram model do?
Not well, it would assign the most probability to the most common word (i.e. the word
that occurs the most in the training corpus).

Better language model = assigns higher probability to word that actually occurs.

Pr[w1w2…wk]
Pr[wk |w1…wk−1]

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
…
friend rice 0.0001
…

(Slide credit: COS324, Ruth Fong)

Perplexity (ppl)
• Measure of how well a LM predicts the next word

• For a test corpus with words w1, w2, . . . wn

Perplexity =
<latexit sha1_base64="FQkB9Z6nF64vxzDm2AwgjD5ugng=">AAACCHicbVDLSgMxFM3UV62vqksXBotQodaZUtRl0Y3LCvYBbR0ymUwbmkmGJGMpQ5du/BU3LhRx6ye4829MHwttPXDh5Jx7yb3HixhV2ra/rdTS8srqWno9s7G5tb2T3d2rKxFLTGpYMCGbHlKEUU5qmmpGmpEkKPQYaXj967HfeCBSUcHv9DAinRB1OQ0oRtpIbvawmh+4TgEO3FIBtpkvtBo/+Ml9cuqc8ZGbzdlFewK4SJwZyYEZqm72q+0LHIeEa8yQUi3HjnQnQVJTzMgo044ViRDuoy5pGcpRSFQnmRwygsdG8WEgpCmu4UT9PZGgUKlh6JnOEOmemvfG4n9eK9bBZSehPIo14Xj6URAzqAUcpwJ9KgnWbGgIwpKaXSHuIYmwNtllTAjO/MmLpF4qOufF8m05V7maxZEGB+AI5IEDLkAF3IAqqAEMHsEzeAVv1pP1Yr1bH9PWlDWb2Qd/YH3+ADacl5U=</latexit>

P (w1, w2, . . . , wn)
�1/n

 where ppl(S) = 2x x = −
1
n

log2 P(w1, …, wn) = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)
Cross-
Entropy

• Unigram model: x = −
1
n

n

∑
i=1

log P(wi) (since)P(wj |w1 . . . wj−1) ≈ P(wj)

• Minimizing perplexity ~ maximizing probability of corpus

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

 A) B) C) D)

P(w |wi−k, . . . wi−1) =
1

|V |
, ∀w ∈ V

2|V| |V | |V |2 2−|V|

 where ppl(S) = 2x x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

 A) B) C) D)

P(w |wi−k, . . . wi−1) =
1

|V |
, ∀w ∈ V

2|V| |V | |V |2 2−|V|

 where ppl(S) = 2x x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

ppl = 2− 1
n n log(1/|V|) = |V |

branching factor = # of possible words
following any word

Measure of model’s uncertainty about
next word (aka `average branching factor’)

Perplexity

GPT-3 175B:
ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Smoothing

Generalization of n-grams

• Not all n-grams in the test set will be observed in training data

• Test corpus might have some that have zero probability under our model

• Training set: Google news

• Test set: Shakespeare

• P(affray | voice doth us) = 0 P(test corpus) = 0

• Perplexity is not defined.

⟹

 where ppl(S) = 2x

x = −
1
n

n

∑
i=1

log P(wi |w1 . . . wi−1)

Sparsity in language

Fr
eq

ue
nc

y

Rank

• Long tail of infrequent words

• Most finite-size corpora will have this problem.

Zipf’s Law

freq / 1

rank

Smoothing

• Handle sparsity by making sure all probabilities are non-zero in our model

• Additive: Add a small amount to all probabilities

• Interpolation: Use a combination of different granularities of n-grams

• Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

Smoothing intuition
Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

(Slide credit: Dan Klein)

Laplace smoothing

• Also known as add-alpha

• Simplest form of smoothing: Just add to all counts and renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

α

P(wi |wi−1) =
C(wi−1, wi)

C(wi−1)

P(wi |wi−1) =
C(wi−1, wi) + α
C(wi−1) + α |V |

Raw bigram counts
 (Berkeley restaurant corpus)

Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Slide credit: Dan Jurafsky)

Smoothed bigram counts
Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

Add 1 to all the entries in the matrix

(Slide credit: Dan Jurafsky)

Smoothed bigram probabilities

(Credits: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |

α = 1

Linear Interpolation

• Use a combination of models to estimate probability

• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)X

i

�i = 1

Trigram

Bigram

Unigram

<latexit sha1_base64="BxTq7RsdzRzwcg5LYhYgpCXSuek=">AAACNHicfVBLSwMxGMz6rPW16tFLsAgVtOyWol6EohfBywr2Ad1lyWazbWj2QZK1lGV/lBd/iBcRPCji1d9g+jhoKw4Ehpn5knzjJYwKaRgv2sLi0vLKamGtuL6xubWt7+w2RZxyTBo4ZjFve0gQRiPSkFQy0k44QaHHSMvrX4381j3hgsbRnRwmxAlRN6IBxUgqydVv7B6SmZWXBy6Fdkh9OHAzelLNjyfEzI/gBbSZutFHrgmtf4KuXjIqxhhwnphTUgJTWK7+ZPsxTkMSScyQEB3TSKSTIS4pZiQv2qkgCcJ91CUdRSMUEuFk46VzeKgUHwYxVyeScKz+nMhQKMQw9FQyRLInZr2R+JfXSWVw7mQ0SlJJIjx5KEgZlDEcNQh9ygmWbKgIwpyqv0LcQxxhqXouqhLM2ZXnSbNaMU8rtdtaqX45raMA9sEBKAMTnIE6uAYWaAAMHsAzeAPv2qP2qn1on5Pogjad2QO/oH19A8ZPqHc=</latexit>

P̂ (wi | wi�2, wi�1) = �1P (wi | wi�2, wi�1)

How can we choose lambdas?

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out development/validation set

• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation Test

Discounting
• Determine some “mass” to remove from probability estimates

• More explicit method for redistributing mass among unseen n-grams

• Just choose an absolute value to discount (usually <1)

Absolute Discounting

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words
for which Count(the,) = 0

α(wi−1) = 1 − ∑
w

Count * (wi−1, w)
Count(wi−1)

α(the) = 1 −
43
48

= 5/48

w
w

 if

Pabs_discount(wi |wi−1) =
c(wi−1, wi) − d

c(wi−1)
c(wi−1, wi) > 0

Unigram probabilities

Absolute Discounting

 if α(wi−1)
P(wi)

∑w′ |c(wi−1,w′)=0 P(w′)
c(wi−1, wi) = 0

<latexit sha1_base64="e5bNob4MCbPyKwXfhB7jA3Vbdr4=">AAACGXicbZDJSgNBEIZ74hbjFvXopTEI8RJnJGouQtCLxwhmgUwIPZ1K0qRnobtGDENew4uv4sWDIh715NvYWQ6a+EPDx19VVNfvRVJotO1vK7W0vLK6ll7PbGxube9kd/dqOowVhyoPZagaHtMgRQBVFCihESlgvieh7g2ux/X6PSgtwuAOhxG0fNYLRFdwhsZqZ22XyajP8i7CAybYh9ExvaSOTV0UPmhqF87oCS2WjDmFdjZnF+yJ6CI4M8iRmSrt7KfbCXnsQ4BcMq2bjh1hK2EKBZcwyrixhojxAetB02DAzNpWMrlsRI+M06HdUJkXIJ24vycS5ms99D3T6TPs6/na2Pyv1oyxW2olIohihIBPF3VjSTGk45hoRyjgKIcGGFfC/JXyPlOMowkzY0Jw5k9ehNppwTkvFG+LufLVLI40OSCHJE8cckHK5IZUSJVw8kieySt5s56sF+vd+pi2pqzZzD75I+vrB6HxnDg=</latexit>

↵(the) = 10⇥ 0.5/48 = 5/48

Up next: Text classification

