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Transformer models as universal architecture

Slide credit: Lei Li



Why we need systems optimization? 
LLMs are expensive 

Slide credit: Lei Li



Overview

• (All) Transformer math you need to know 

• Training systems 

• Inference systems



Transformer Math: Parameters

• Embed dim D, number of layers L, vocab size V, context length N 

• MHA layer:   (  for QKV projection,  for output projection) 

• FFN layer:  
 

,   
Typically  

• Embedding and LM head:  each


• Total:  if shared embedding,  if not shared 

4D2 3D2 D2

8D2

FFN(xi) = W2ϕ(W1xi + b1) + b2
W1 ∈ ℝd×dff W2 ∈ ℝdff×d

dff = 4d

DV

12LD2 + DV 12LD2 + 2DV



Transformer Math: Matrix Multiply

• Matmul size (N x P) @ (P x M) has 2MNP FLOPS

• Per input vector, each weight matrix size N x P has 2NP FLOPS 

• Forward pass FLOPS per input vector: 2 x no. (non-embedding) params

https://jax-ml.github.io/scaling-book/transformers/



Transformer Math: Forward and Backward FLOPS

• Forward:  

• Backward:  
Weight gradient       
Activation gradient  
Twice the FLOPS of forward 

A = W X

dW = dA XT

dX = WT dA

• Forward + backward FLOPS per input vector: 6 x no. (non-embedding) params



Transformer Math: Attention FLOPS

• Forward, for input length N:    (  for ,  for ) 
N: context length, D: model dimension 
Per input vector:  

• Backward: 2x forward  

4N2D 2N2D QKT 2N2D PV

4ND

• Forward + backward FLOPS per input vector: 12LND 
L: number of layers

• For causal attention: only compute half the entries -> 6LND 
Convention varies on how to count  
(should it be 12LND, 6LND, or even 8LND or 7LND due to recompute in the backward pass?)



Transformer Math: Total FLOPS

• Forward + backward FLOPS per input vector:  
6 x no. (non-embedding) params + 12LND 
 
L layers, context length N, model dim D

• Typically approximated as: 6 x no. (non-embedding) params 
when context length is not too long

• Total FLOPS when trained on T tokens:  x no. (non-embedding) params x no. tokens≈ 6



Hardware

BF16 Dense: 
 989 TFLOPS



How long does it take to train a model?

• Model FLOPS utilization (MFU)  
MFU = Model FLOPS per sec / theoretical max TFLOPS per sec 

• Typical MFU: 30-50% (e.g. 300-500 TFLOPS/sec per H100) 

• Why: memory-bandwidth bound operations, communication, power-throttling

• E.g., how many H100 hours does it take to train a X billion model to Y trillion 
tokens?  

 * X * Y FLOPS / (  *  * 3600 sec)≈ 6 109 1012 400 1012



How long does it take to train a Llama?

• How many H100 hours does it take to train a X billion model to Y trillion tokens?  
 * X * Y FLOPS / (  * 3600 sec)≈ 6 109 1012 400 * 1012

• E.g., Llama-3: 405B, 15T tokens

 * 405e9 * 15e12 / (400e12 * 3600) 
= 25.3M hours = 66 days on 16K H100 
≈ 6



Overview

• (All) Transformer math you need to know 

• Training systems 

• Inference systems



Training: Mixed Precision

BF16 Dense: 
 989 TFLOPS

BF16/FP16 FLOPS are much higher than FP32!



Training: Automatic Mixed Precision

Done automatically if you use PyTorch AMP



Distributed Training: Communication 
AllReduce

Slide credit: Lei Li



Distributed Training: Communication 
ReduceScatter

Slide credit: Lei Li



Distributed Training: Communication 
AllGather

Slide credit: Lei Li



Distributed Training: Data Parallel

PyTorch calls this Distributed Data Parallel (DDP)
Slide credit: Lei Li



Distributed Training:  
Zero Redundancy Optimizer (ZeRO)

PyTorch: Fully Sharded Data Parallel (FSDP)



Distributed Training: Tensor Parallel



Distributed Training: Tensor Parallel

Shoeybi et al. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism



Overview

• (All) Transformer math you need to know 

• Training systems 

• Inference systems



Inference: KV caching

https://jax-ml.github.io/scaling-book/inference/



Inference: KV caching

https://jax-ml.github.io/scaling-book/inference/



Inference: KV caching

Slide credit: Dan Jurafsky



Inference Math

• Decoding is memory-bandwidth bound: Need to load Params + KV cache to memory


• Model bandwidth utilization (MBU) = No. of bytes loaded per sec / Theoretical mem bw 


• Typical MBU: 30-70%

gpt-fast, A100 (max 2TB/s):

gpt-fast: https://github.com/pytorch-labs/gpt-fast

https://github.com/pytorch-labs/gpt-fast


Inference: Reducing KV cache with 
Grouped Query Attention

Ainslie et al. GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints



Inference: Weight & KV Cache Quantization

• Reduce no. bytes loaded, at the cost of slightly lower model quality



Inference: Challenge with KV cache 
memory management

• Pre-allocates contiguous memory to the request’s max length 

• Memory fragmentation: 
Internal fragmentation due to unknown output length 
External fragmentation due to non-uniform per-request max length

Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention



Inference: Memory management with 
Paged KV

Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention



Inference: Speculative Decoding

• Use a small Draft model to predict what the Target model will output


• Verify with Target model multiple tokens in parallel (  same cost as processing 1 
token)

≈

Leviathan et al. Fast Inference from Transformers via Speculative Decoding



Multi-token Prediction

Gloeckle et al. Better & Faster Large Language Models via Multi-token Prediction



Concluding Thoughts

• Efficient training & inference for LLM is a wide open field 

• Intersection of model architecture, systems, and algorithms 

• Trend: close co-design of model, inference system, and hardware


