

LI9: Systems for LLM Training and Inference

COS 484

Natural Language Processing

Spring 2025

Transformer models as universal architecture

Natural Language Supervision for Vision (CLIP)

Language Model (BERT, **T5, GPT3/4)**

Slide credit: Lei Li

2

Why we need systems optimization? LLMs are expensive

Slide credit: Lei Li

= 1 Car Year CO2

Overview

- (All) Transformer math you need to know
- Training systems
- Inference systems

- Embed dim D, number of layers L, vocab size V, context length N
- MHA layer: $4D^2$ ($3D^2$ for QKV projection, D^2 for output projection)
- FFN layer: $8D^2$ $FFN(\mathbf{x}_i) = W_2\phi(W_1\mathbf{x}_i + \mathbf{b}_1) + \mathbf{b}_2$ $\mathbf{W}_1 \in \mathbb{R}^{d \times d_{ff}}, \mathbf{W}_2 \in \mathbb{R}^{d_{ff} \times d}$ Typically $d_{ff} = 4d$
- Embedding and LM head: DV each
- Total: $12LD^2 + DV$ if shared embedding, $12LD^2 + 2DV$ if not shared

Transformer Math: Parameters

Transformer Math: Matrix Multiply

• Matmul size (N x P) @ (P x M) has 2MNP FLOPS

- Per input vector, each weight matrix size N x P has 2NP FLOPS
- Forward pass FLOPS per input vector: 2 x no. (non-embedding) params

https://jax-ml.github.io/scaling-book/transformers/

Transformer Math: Forward and Backward FLOPS

• Forward: A = W X

Backward: Weight gradient $dW = dA X^T$ Activation gradient $dX = W^T dA$ Twice the FLOPS of forward

• Forward + backward FLOPS per input vector: 6 x no. (non-embedding) params

Transformer Math: Attention FLOPS

- Forward, for input length N: $4N^2D$ ($2N^2D$ for QK^T , $2N^2D$ for PV) N: context length, D: model dimension Per input vector: 4ND
- Backward: 2x forward
- Forward + backward FLOPS per input vector: 12LND L: number of layers

• For causal attention: only compute half the entries -> 6LND Convention varies on how to count

(should it be 12LND, 6LND, or even 8LND or 7LND due to recompute in the backward pass?)

Transformer Math: Total FLOPS

• Forward + backward FLOPS per input vector: 6 x no. (non-embedding) params + 12LND

L layers, context length N, model dim D

• Typically approximated as: 6 x no. (non-embedding) params when context length is not too long

• Total FLOPS when trained on T tokens: $\approx 6 \text{ x}$ no. (non-embedding) params x no. tokens

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS (SXM4 AND PCIE FORM FACTORS)

	A100 80GB PCle	A100 80GB SXM	
FP64	9.7 TFLOPS		
FP64 Tensor Core	19.5 TFLOPS		
FP32	19.5 T	FLOPS	
Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*		
BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*		
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*		
INT8 Tensor Core	624 TOPS 1248 TOPS*		
GPU Memory	80GB HBM2e	80GB HBM2e	
GPU Memory Bandwidth	1,935GB/s	2,039GB/s	
Max Thermal Design Power (TDP)	300W	400W***	
Multi-Instance GPU	Up to 7 MIGs @ 10GB	Up to 7 MIGs @ 10GB	
Form Factor	PCIe dual-slot air cooled or single-slot liquid cooled	SXM	
Interconnect	NVIDIA® NVLink® Bridge for 2 GPUs: 600GB/s ** PCIe Gen4: 64GB/s	NVLink: 600GB/s PCIe Gen4: 64GB/s	
Server Options	Partner and NVIDIA- Certified Systems [™] with 1-8 GPUs	NVIDIA HGX [™] A100- Partner and NVIDIA- Certified Systems with 4,8, or 16 GPUs NVIDIA DGX [™] A100 with 8 GPUs	

With sparsity

Hardware

Technical Specifications		
	H100 SXM	
FP64	34 teraFLOPS	
FP64 Tensor Core	67 teraFLOPS	
FP32	67 teraFLOPS	
TF32 Tensor Core*	989 teraFLOPS	
BFLOAT16 Tensor Core*	1,979 teraFLOPS	
FP16 Tensor Core*	1,979 teraFLOPS	
FP8 Tensor Core*	3,958 teraFLOPS	
INT8 Tensor Core*	3,958 TOPS	
GPU Memory	80GB	
GPU Memory Bandwidth	3.35TB/s	
Decoders	7 NVDEC 7 JPEG	
Max Thermal Design Power (TDP)	Up to 700W (configurable)	
Multi-Instance GPUs	Up to 7 MIGs @ 10GB each	
Form Factor	SXM	
Interconnect	NVIDIA NVLink [™] : 900GB/s	
	PCIe Gen5: 128GB/s	
Server Options	NVIDIA HGX H100 Partner and NVIDIA- Certified Systems [™] with 4 or 8 GPUs	
	NVIDIA DGX H100 with 8 GPUs	
NVIDIA Enterprise	Add-on	

BF16 Dense: 989 TFLOPS

*With sparsity

How long does it take to train a model?

- Model FLOPS utilization (MFU)
 MFU = Model FLOPS per sec / theoretical max TFLOPS per sec
- Typical MFU: 30-50% (e.g. 300-500 TFLOPS/sec per H100)
- Why: memory-bandwidth bound operations, communication, power-throttling

• E.g., how many H100 hours does it take to train a X billion model to Y trillion tokens? $\approx 6 * 10^9$ X * 10^{12} Y FLOPS / (400 * 10^{12} * 3600 sec)

How long does it take to train a Llama?

- $\approx 6 * 10^9 \text{X} * 10^{12} \text{Y}$ FLOPS / (400 * 10¹² * 3600 sec)
- E.g., Llama-3: 405B, 15T tokens

 $\approx 6 * 405e9 * 15e12 / (400e12 * 3600)$ = 25.3M hours = 66 days on 16K H100

	Training Time (GPU hours)	Training Power Consumption (W)	Training Location-Based Greenhouse Gas Emissions (tons CO2eq)	Training Market-Based Greenhouse Gas Emissions (tons CO2eq)
Llama 3.1 8B	1.46M	700	420	0
Llama 3.1 70B	7.0M	700	2,040	0
Llama 3.1 405B	30.84M	700	8,930	0
Total	39.3M		11,390	0

• How many H100 hours does it take to train a X billion model to Y trillion tokens?

Overview

- (All) Transformer math you need to know
- Training systems
- Inference systems

Technical Specifications	
	H100 SXM
FP64	34 teraFLOPS
FP64 Tensor Core	67 teraFLOPS
FP32	67 teraFLOPS
TF32 Tensor Core*	989 teraFLOPS
BFLOAT16 Tensor Core*	1,979 teraFLOPS
FP16 Tensor Core*	1,979 teraFLOPS
FP8 Tensor Core*	3,958 teraFLOPS
INT8 Tensor Core*	3,958 TOPS
GPU Memory	80GB
GPU Memory Bandwidth	3.35TB/s
Decoders	7 NVDEC
	7 JPEG
Max Thermal Design	Up to 700W
Power (TDP)	(configurable)
Multi-Instance GPUs	Up to 7 MIGs @ 10GB each
Form Factor	SXM
Interconnect	NVIDIA NVLink [™] : 900GB/s
	PCIe Gen5: 128GB/s
Server Options	NVIDIA HGX H100
	Partner and NVIDIA-
	Certified Systems [™] with
	4 or 8 GPUs
	NVIDIA DGX H100 with
	8 GPUs
NVIDIA Enterprise	Add-on

BF16 Dense: 989 TFLOPS

*With sparsity

Training: Mixed Precision

BF16/FP16 FLOPS are much higher than FP32!

Training: Automatic Mixed Precision

FP16

- Weight updates benefit from precision GEMMs + Convolutions can use Tensor Cores
- Most pointwise ops (e.g. add, multiply): 1/2X memory storage for intermediates, 2X memory throughput

Done automatically if you use PyTorch AMP

FP32

- Loss functions (often reductions) benefit from precision and range
- Softmax, norms, some other ops benefit from precision and range

Distributed Training: Communication AllReduce

writing the result in the receive buffers of every rank.

Slide credit: Lei Li

Compute reduction (sum, min, max) across devices and

out[i] = sum(inX[i])

Distributed Training: Communication ReduceScatter

 Compute reduction (sum, min, max) and writing parts of results scattered in ranks

Slide credit: Lei Li

outY[i] = sum(inX[Y*count+i])

Distributed Training: Communication AllGather

gathers N values from k ranks into an output of size k*N, and distributes that result to all ranks (devices).

Slide credit: Lei Li

out[Y*count+i] = inY[i]

Distributed Training: Data Parallel

PyTorch calls this Distributed Data Parallel (DDP)

Slide credit: Lei Li

Distributed Training: Zero Redundancy Optimizer (ZeRO)

PyTorch: Fully Sharded Data Parallel (FSDP)

Distributed Training: Tensor Parallel

Shoeybi et al. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Distributed Training: Tensor Parallel

Overview

- (All) Transformer math you need to know
- Training systems
- Inference systems

https://jax-ml.github.io/scaling-book/inference/

Inference: KV caching

Inference: KV caching

https://jax-ml.github.io/scaling-book/inference/

Inference: KV caching

Slide credit: Dan Jurafsky

Inference Math

- Decoding is memory-bandwidth bound: Need to load Params + KV cache to memory \bullet
- Model bandwidth utilization (MBU) = No. of bytes loaded per sec / Theoretical mem bw

lodel	Technique	Tokens/Second	Memory Bandwidth (GB/s)
-2-7B	Base	104.9	1397.31
	8-bit	155.58	1069.20
	4-bit (G=32)	196.80	862.69
-2-70B	Base	OOM	
	8-bit	19.13	1322.58
	4-bit (G=32)	25.25	1097.66
-3.1-8B	Base	93.89	1410.76
	8-bit	137.64	1030.89
-3.1-70B	Base	OOM	
	8-bit	18.04	1253.78

gpt-fast: <u>https://github.com/pytorch-labs/gpt-fast</u>

Inference: Reducing KV cache with Grouped Query Attention

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each *group* of query heads, interpolating between multi-head and multi-query attention.

Ainslie et al. GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Inference: Weight & KV Cache Quantization

Reduce no. bytes loaded, at the cost of slightly lower model quality

Inference: Challenge with KV cache memory management

- **Pre-allocates contiguous** memory to the request's max length
- **Memory fragmentation:** Internal fragmentation due to unknown output length External fragmentation due to non-uniform per-request max length

Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention

Inference: Memory management with Paged KV

Prompt: "Alan Turing is a computer scientist"

Logical KV blocks

block 0	Alan	Turing	is	а		F bloo
block 1	computer	scientist				
block 2						
block 3					,	

Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention

Inference: Speculative Decoding

- Use a small Draft model to predict what the Target model will output \bullet
- Verify with Target model multiple tokens in parallel (\approx same cost as processing 1) token)

Step1: Autoregressive generation

Step2: Parallel verification

Leviathan et al. Fast Inference from Transformers via Speculative Decoding

Multi-token Prediction

Gloeckle et al. Better & Faster Large Language Models via Multi-token Prediction

Concluding Thoughts

- Efficient training & inference for LLM is a wide open field
- Intersection of model architecture, systems, and algorithms
- Trend: close co-design of model, inference system, and hardware