

LI5: Contextualized Representations and Pre-training

Spring 2025

COS 484

Natural Language Processing

Announcements

- Assignment 3 was due today!
- Assignment 4 is now available, due on Apr 21st
- Will have feedback on project proposals by the end of this week.

e on Apr 21st consults by the end of this week.

This lecture

- Contextualized word embeddings
- Pre-training and fine-tuning
- GPT, ELMo, BERT

Limitations of word2vec

- One vector for each word type - (a.k.a. static embeddings)
- Complex characteristics of word use: syntax and semantics
- Polysemous words (e.g., mouse, bank)

mouse ¹ : a mouse	controlling
$mouse^2$: a quiet a	animal like a
bank ¹ :a <i>bank</i> can	hold the inv
bank ² :as agricult	ure burgeons

$$v(\text{play}) = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix}$$

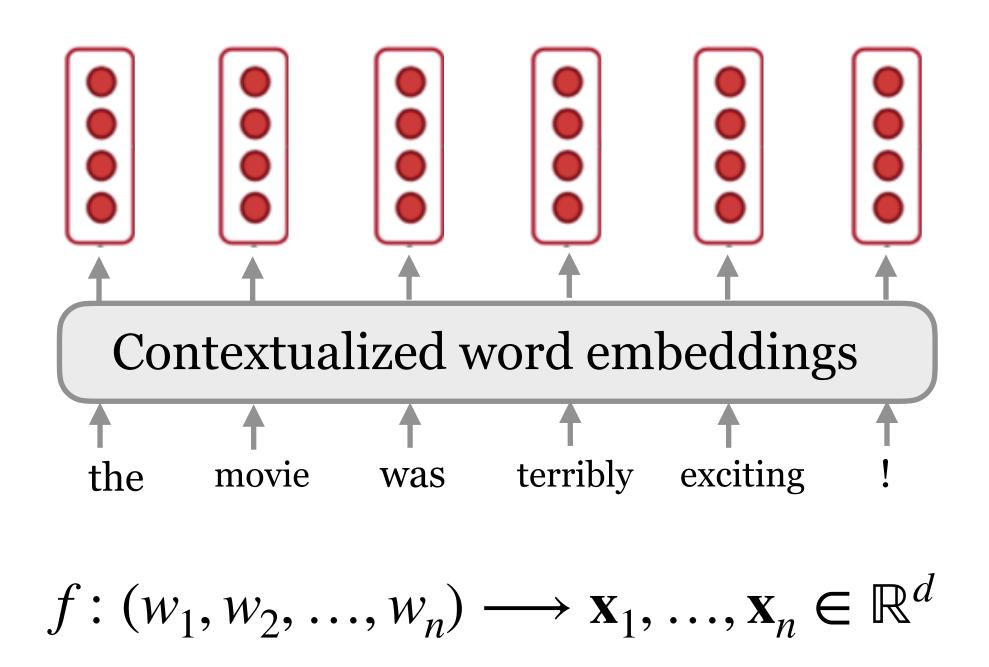
a computer system in 1968.

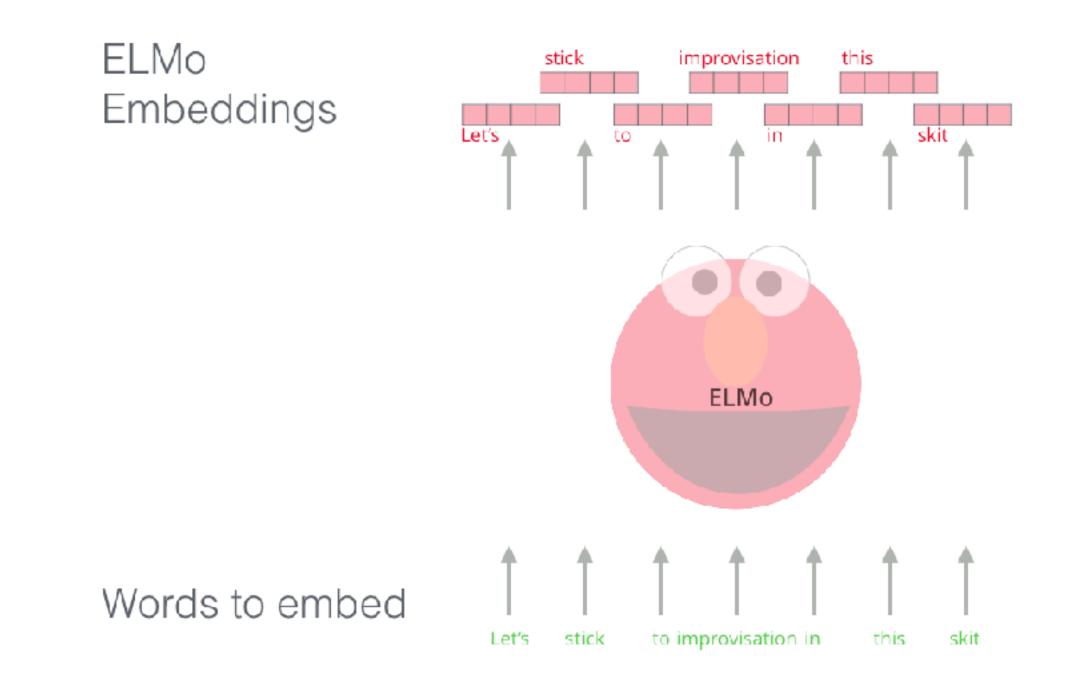
mouse

vestments in a custodial account ...

s on the east *bank*, the river ...

Let's build a vector for each word conditioned on its **context**!





Sent #1: Chico Ruiz made a spectacular **play** on Alusik's grounder {...}

Sent #2: Olivia De Havilland signed to do a Broadway play for Garson {...}

Sent #3: Kieffer was commended for his ability to hit in the clutch , as well as his all-round excellent **play** {...}

Sent #4: {...} they were actors who had been handed fat roles in a successful play {...}

Sent #5: Concepts **play** an important role in all aspects of cognition {...}

- on Alusik's grounder $\{\dots\}$ v(play) = ?adway play for Garson $\{\dots\}$ v(play) = ?to hit in the clutch , as well asv(play) = ?n handed fat roles in a successfulv(play) = ?v(play) = ?v(play) = ?
- l aspects of cognition $\{\ldots\}$ v(play) = ?

- Olivia De Havilland signed to do a Broadway play for Garson {...} (A)
- Kieffer was commended for his ability to hit in the clutch, as well as **(B)** his all-round excellent **play** {...}
- (C){...} they were actors who had been handed fat roles in a successful play {...}
- Concepts play an important role in all aspects of cognition {...} (D)

(B) is correct.

- Sent #1: Chico Ruiz made a spectacular play on Alusik's grounder {...}
- Which of the following v(play) is expected to have the most similar vector to the first one?

		Source	Neares
-	GloVe	play	playing Play, fo
_	biLM –	Chico Ruiz made a spec- tacular play on Alusik 's grounder $\{\}$	Kieffer for his excelle
		Olivia De Havilland signed to do a Broadway play for Garson {}	<pre>{} t a succe compe</pre>

st Neighbors

ig, game, games, played, players, plays, player, football, multiplayer

er, the only junior in the group, was commended s ability to hit in the clutch, as well as his all-round ent play.

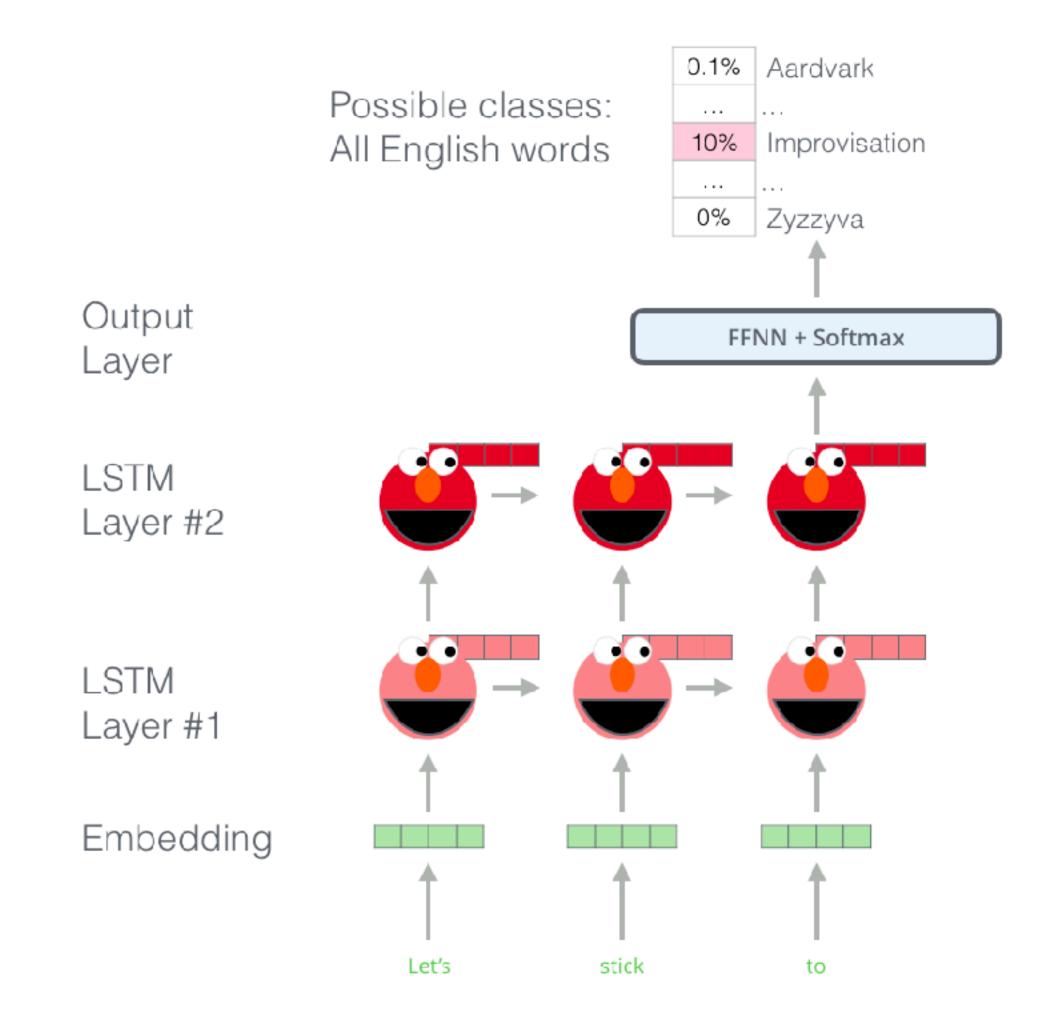
they were actors who had been handed fat roles in cessful play, and had talent enough to fill the roles etently, with nice understatement.

ELMo: Embeddings from Language Models

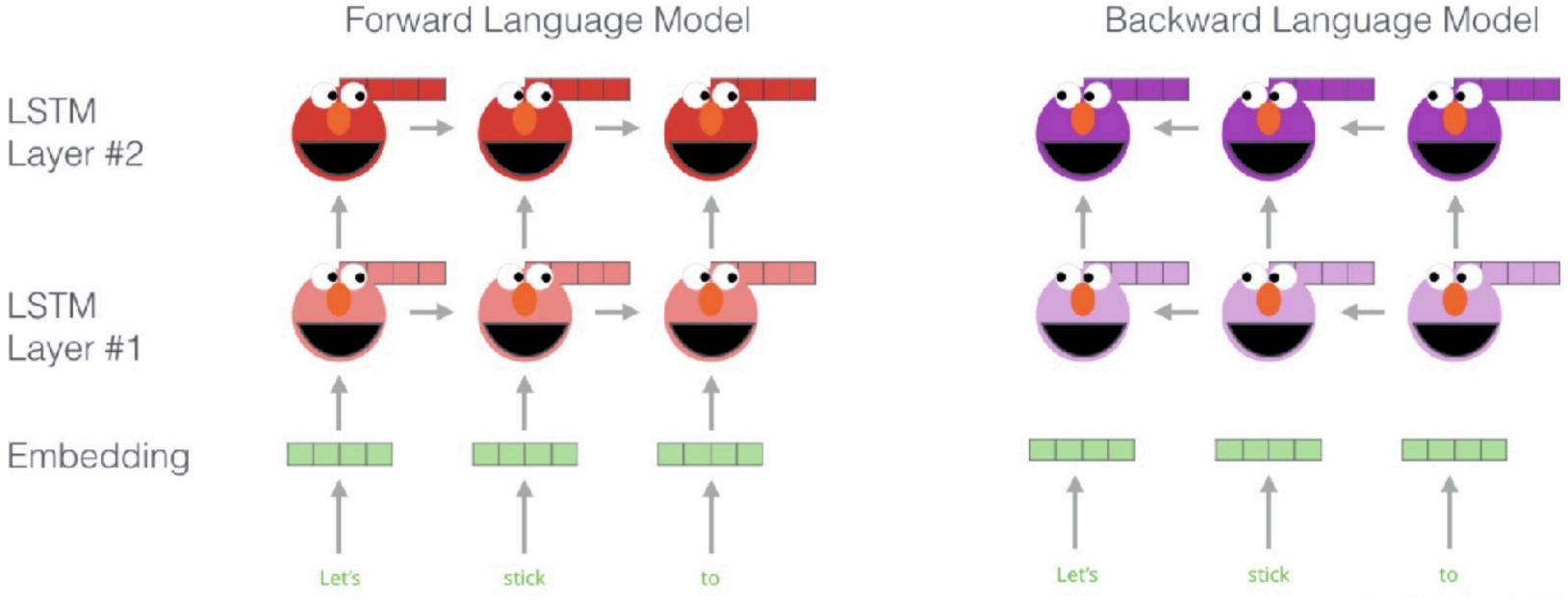
The key idea of ELMo:

- Train *two* stacked LSTM-based language models on a large corpus
- Use the **hidden states** of the LSTMs for each token to compute a vector representation of each word

(Released in 2018/2)

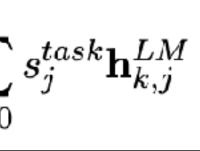


How does ELMo work?



$$\mathbf{ELMo}_{k}^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L}$$

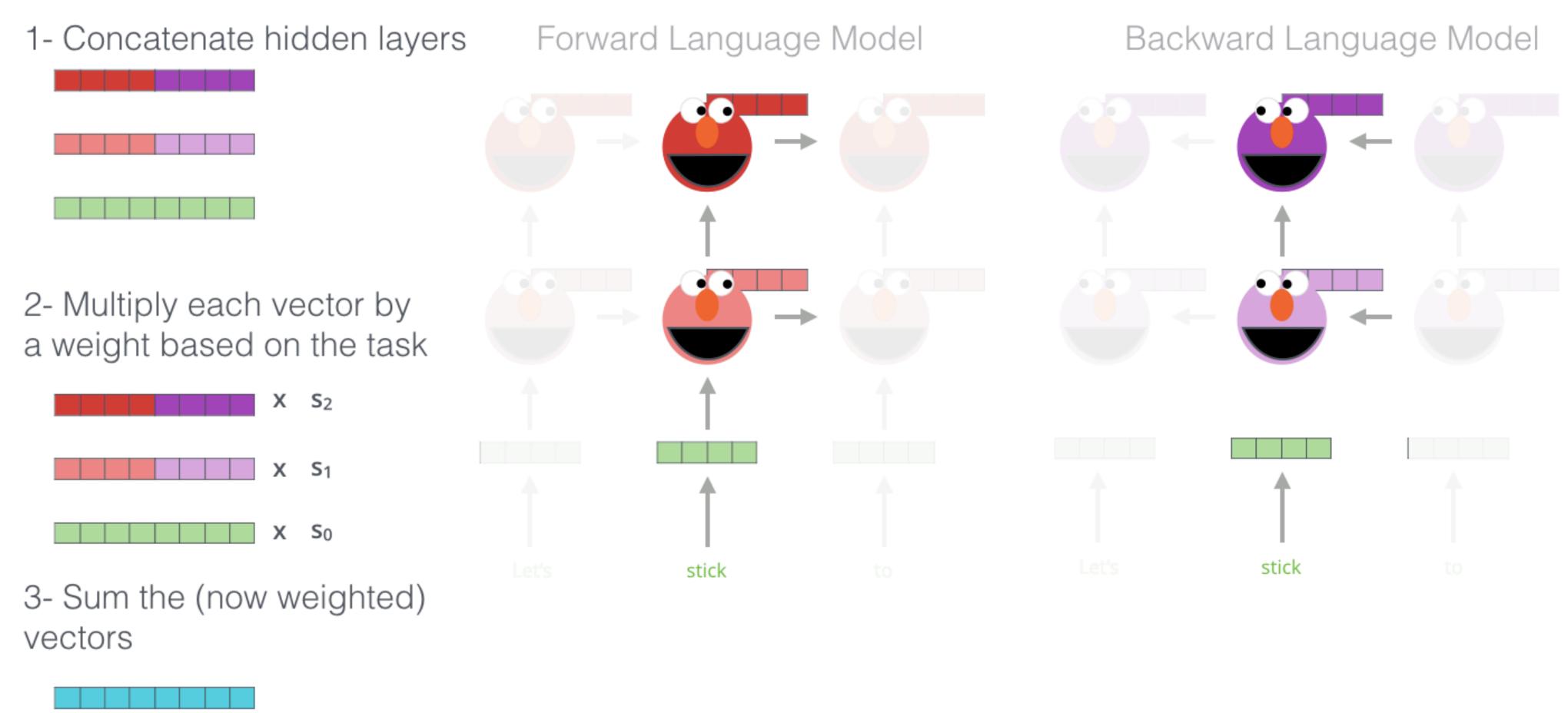
The weights γ^{task} , s_i^{task} are task-dependent and learned



Contextualized word embeddings =

The weighted average of input embeddings + all hidden representations

How does ELMo work?

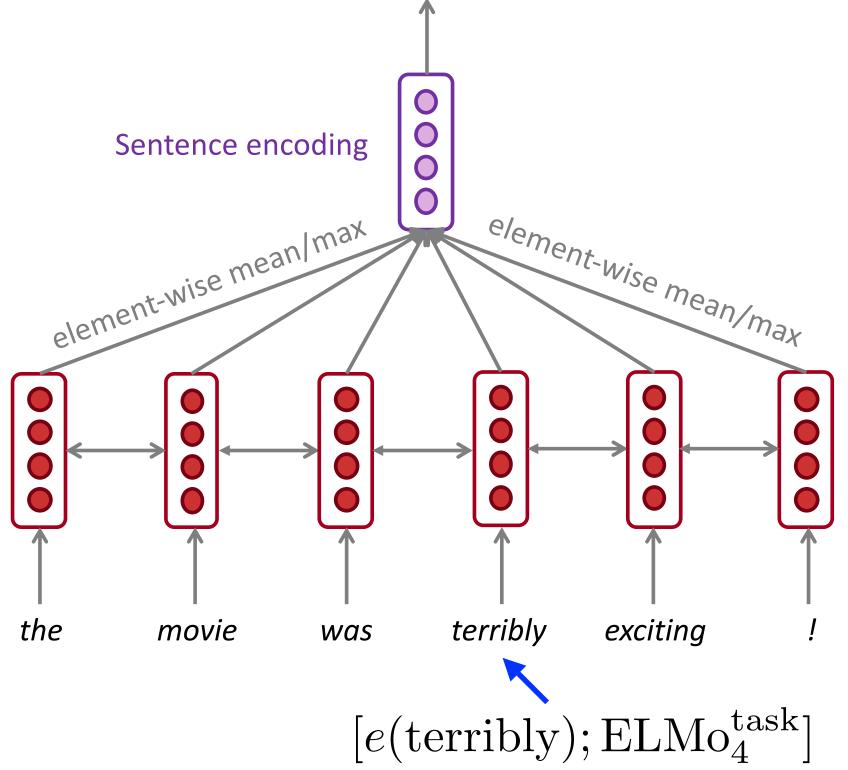


ELMo embedding of "stick" for this task in this context

ELMo: pre-training and the use

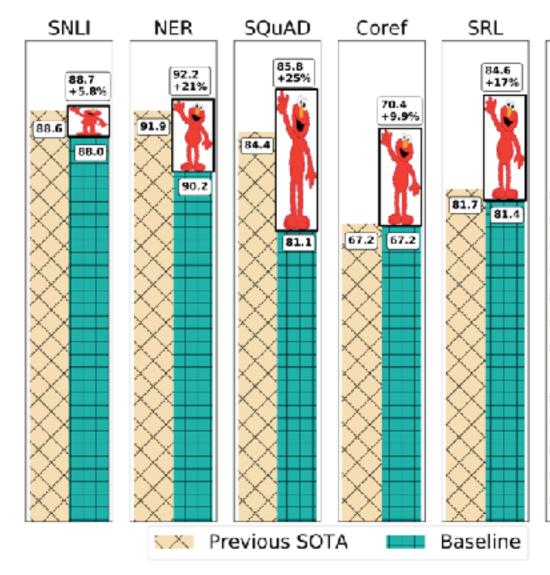
- Training time: 2 weeks on 3 NVIDIA GTX 1080 GPUs

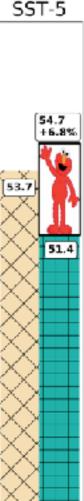
Example use: A BiLSTM model for sentiment classification



(Peters et al, 2018): Deep contextualized word representations

Data: 10 epochs on 1B Word Benchmark (trained on single sentences)

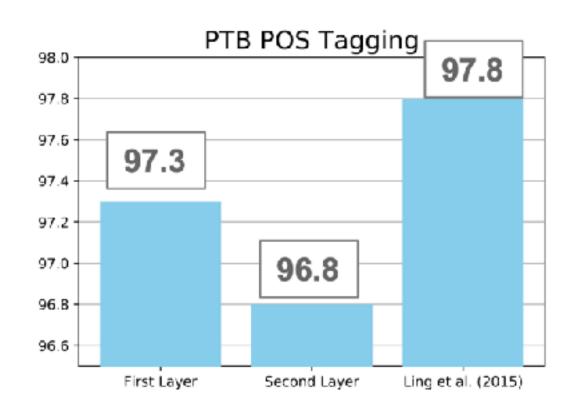




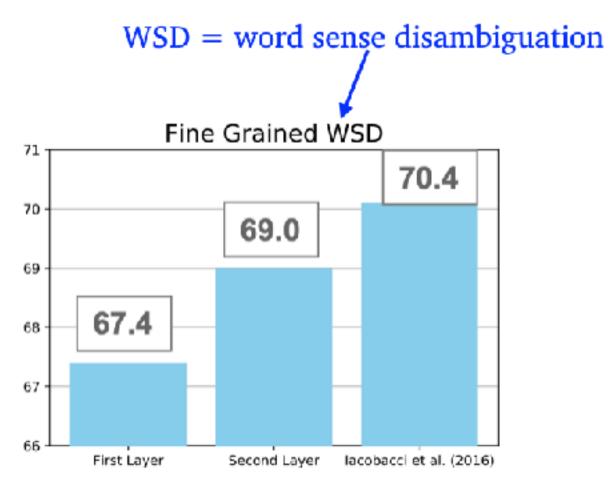
ELMo: some take-aways

Q: Why use both forward and backward language models? Because it is important to model both left and right context! Bidirectionality is very important in language understanding tasks!

Q: Why use the weighted average of different layers instead of just the top layer? Because different layers are expected to encode different information.



first layer > second layer



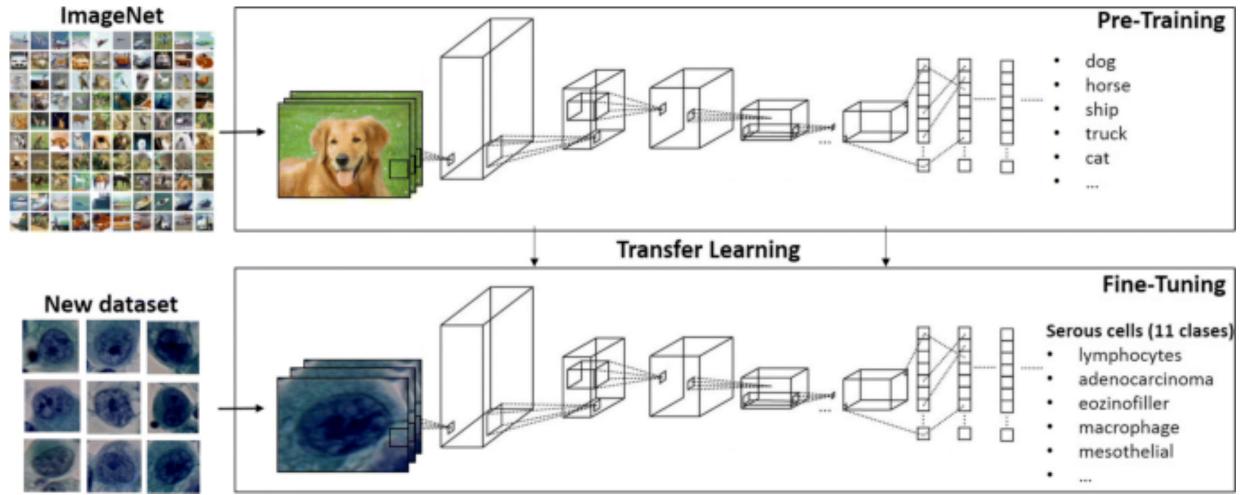
second layer > first layer

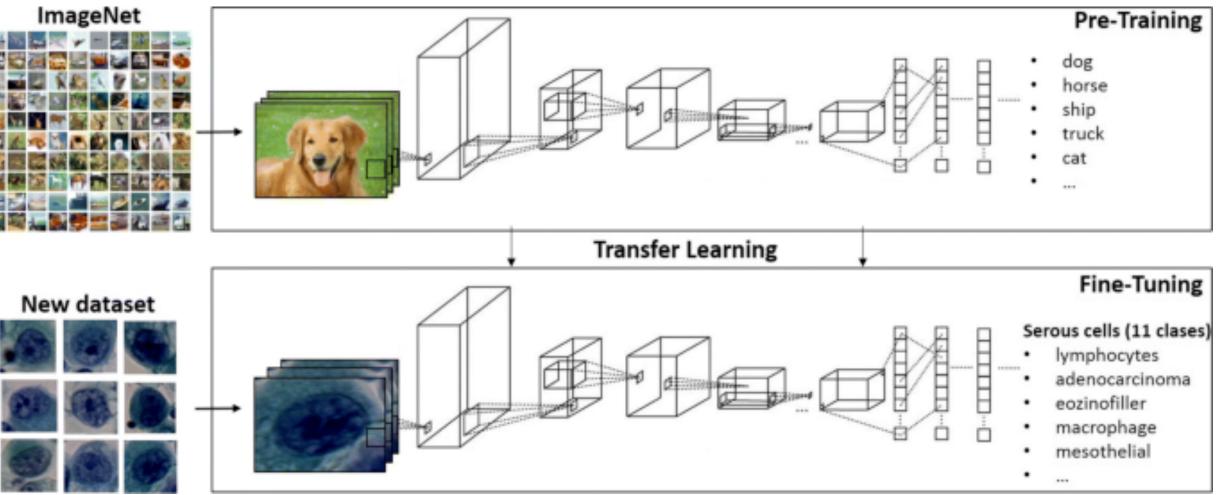
Pre-training and Fine-tuning

What is pre-training / fine-tuning?

- representations for Y as well
- recognizing objects

Can we find some task X that can be useful for a wide range of downstream tasks Y?





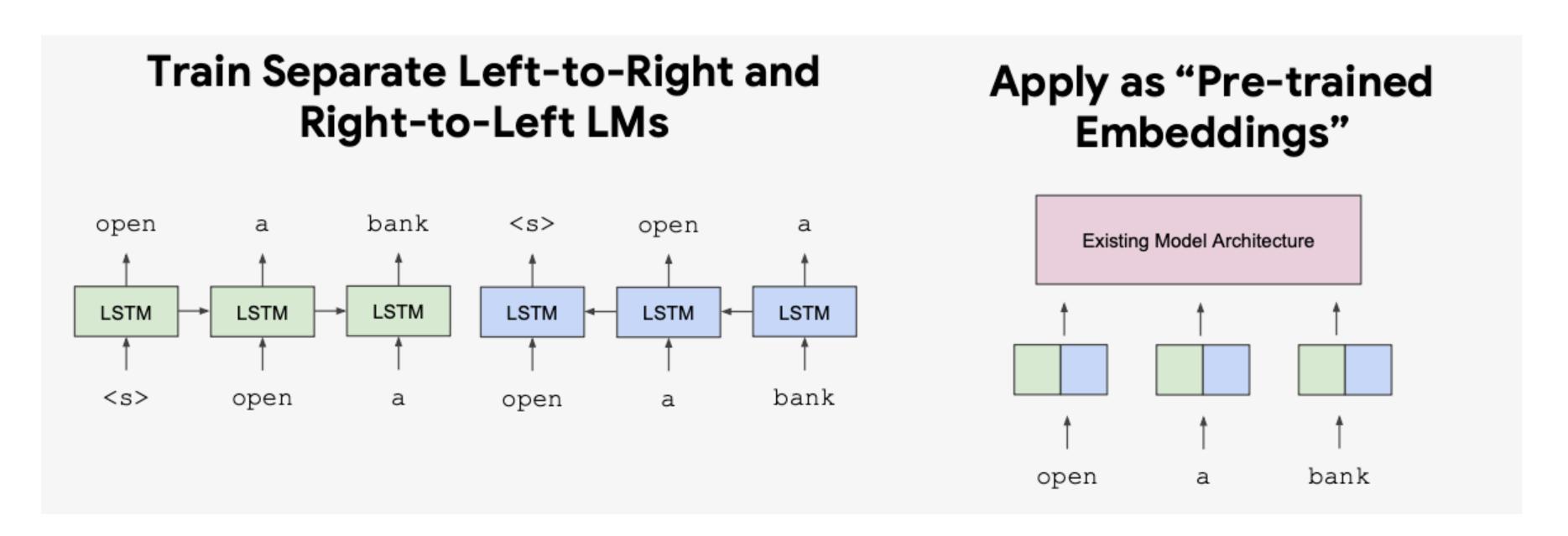
• "Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y

Key idea: X is somewhat related to Y, so a model that can do X will have some good neural

ImageNet pre-training is huge in computer vision: learning generic visual features for

Feature-based vs fine-tuning approaches

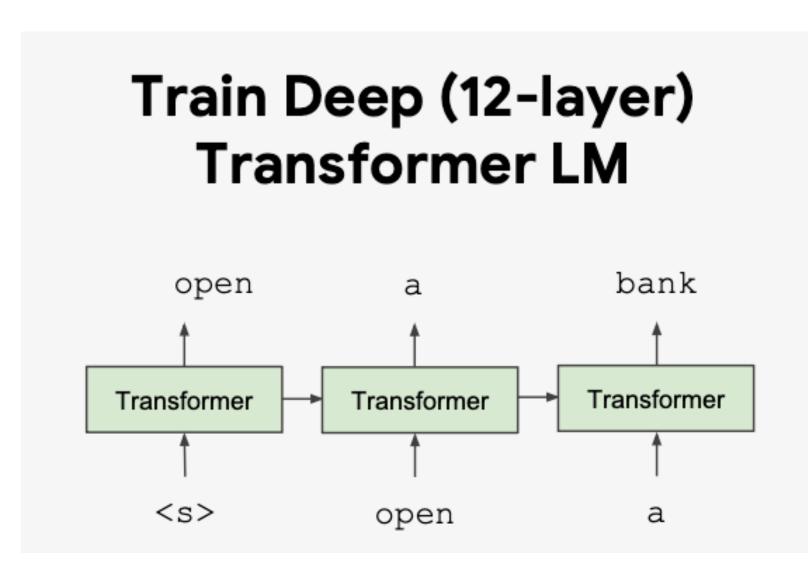
used as **input representations** of existing neural models

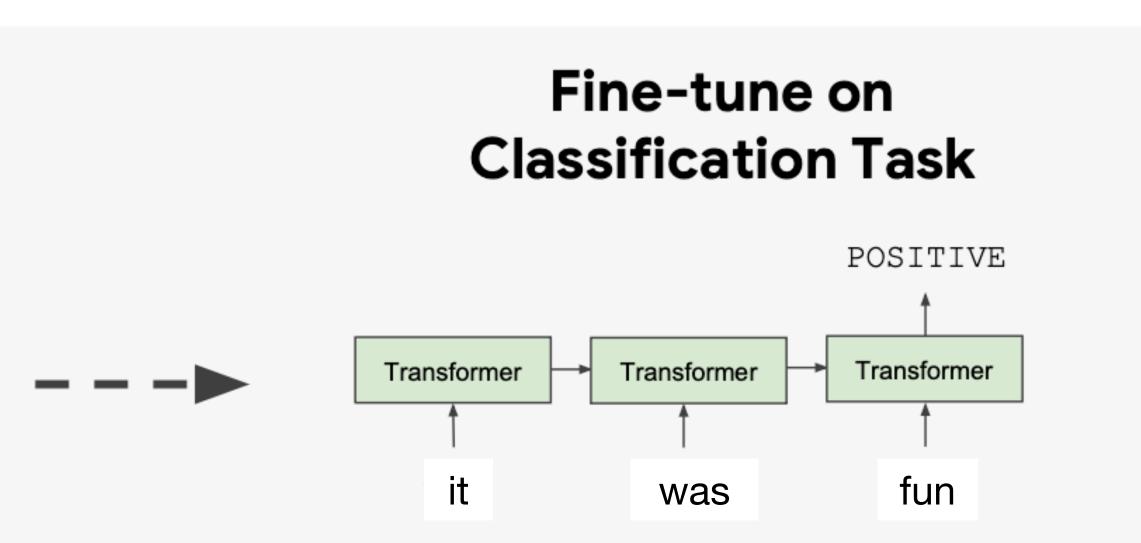


• ELMo is a feature-based approach which only produces word embeddings that can be

Feature-based vs fine-tuning approaches

- GPT / BERT (and most of following models) are fine-tuning approaches
 - Almost all model weights will be re-used, and only a small number of taskspecific will be added for downstream tasks





Most of pre-training is reconstructing the input

Princeton is located in ______.

What can we learn from reconstructing the input?

- Princeton is located in ______.
- I went to the ocean and saw fish, turtles, ______ and seals.
 - General semantics
- I put _____ fork down on the table
 - Syntactic constraints
- The woman walked across the street checking for traffic over _____ shoulder.
 - Co-reference, relations between different entities within the sentence
- popcorn and the drink. The movie was _____.
 - Sentiment

Overall, the value I got from the two hours watching it was the sum total of the

Pre-training for three types of architectures

- cases:
 - **Encoders**: Gets bidirectional context

Encoder-decoders: Gets good parts of encoders and decoders?

Decoders: Language models! _

• The neural architecture influences the type of pre-training and natural use

Pre-training for three types of architectures

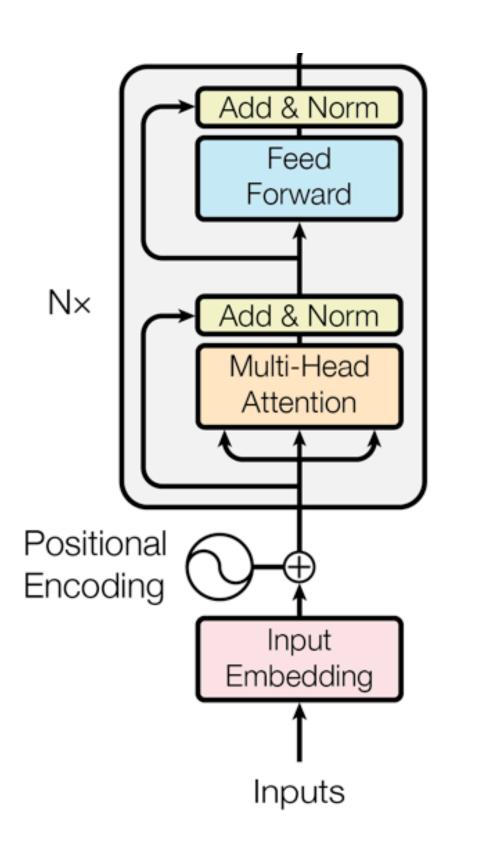
- cases:
 - **Encoders**: Gets bidirectional context

- Encoder-decoders: Gets good parts of encoders and decoders?

Decoders: Language models! -

• The neural architecture influences the type of pre-training and natural use

BERT: Bidirectional Encoder Representations (Released in 2018/10) from Transformers



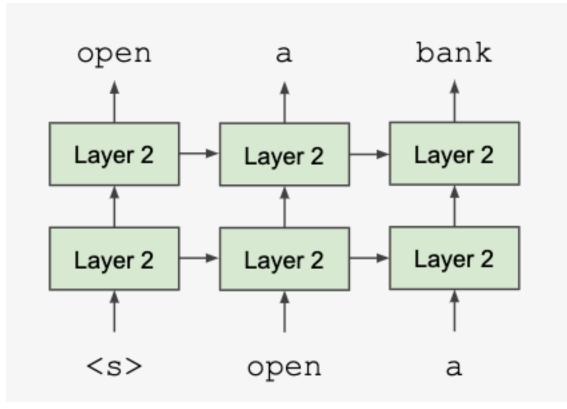
- It is a fine-tuning approach based on a deep bidirectional Transformer encoder instead of a Transformer decoder
- The key: learn representations based on **bidirectional contexts**

- Two new pre-training objectives:
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP) Later work shows that NSP hurts performance though.

- Example #1: we went to the river bank.
- Example #2: I need to go to bank to make a deposit.

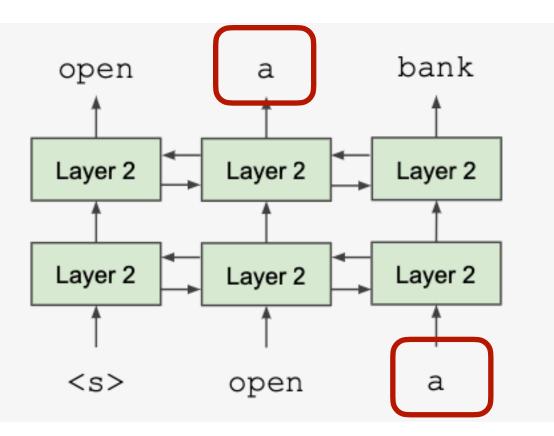
Masked Language Modeling (MLM)

Q: Why we can't do language modeling with bidirectional models?



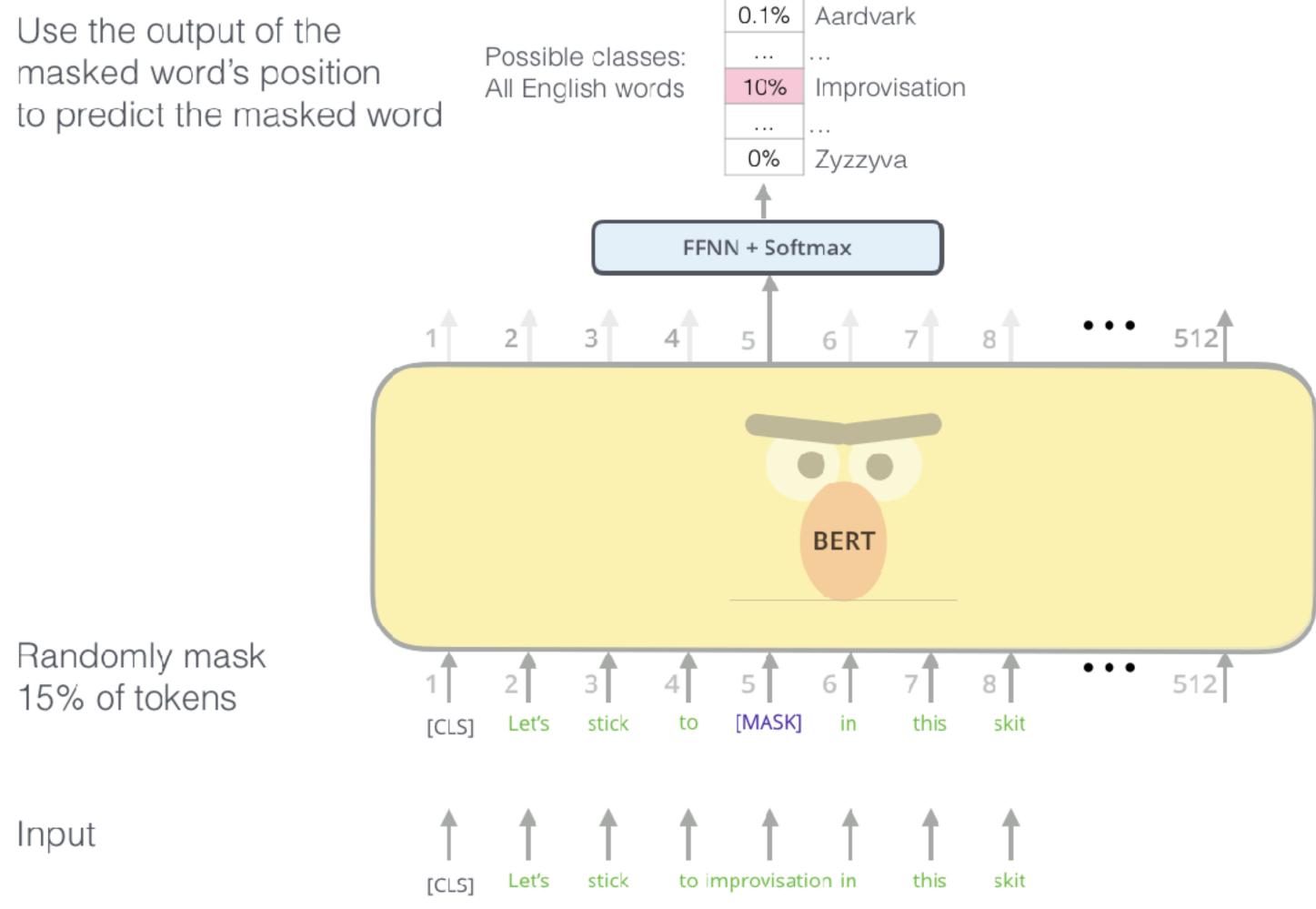
S

the man went to [M



• Solution: Mask out k% of the input words, and then predict the masked words

Masked Language Modeling (MLM)



- Aardvark

MLM: 80-10-10 corruption

For the 15% predicted words,

- 80% of the time, they replace it with [MASK] token
- 10% of the time, they replace it with a random word in the vocabulary
- 10% of the time, they keep it unchanged

went to the store \longrightarrow went to the [MASK]

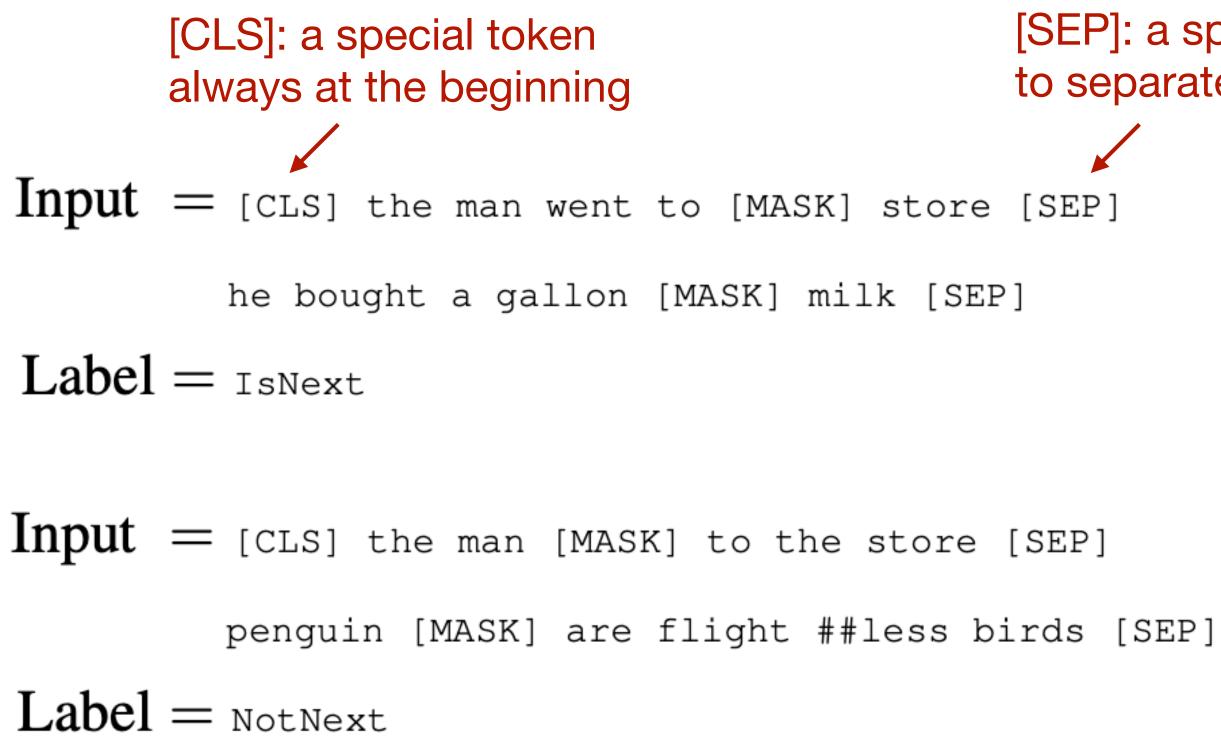
went to the store \longrightarrow went to the running

went to the store \longrightarrow went to the store

Why? Because [MASK] tokens are never seen during fine-tuning (See Table 8 of the paper for an ablation study)

Next Sentence Prediction (NSP)

- NSP is designed to reduce the gap between pre-training and fine-tuning



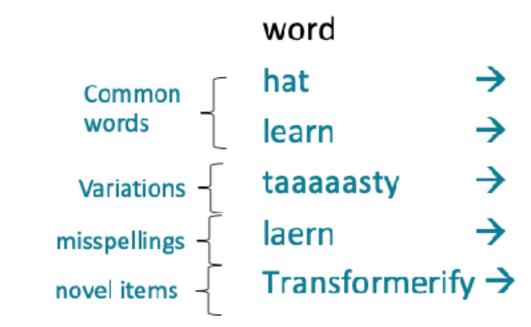
• Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, QA)

[SEP]: a special token used to separate two segments

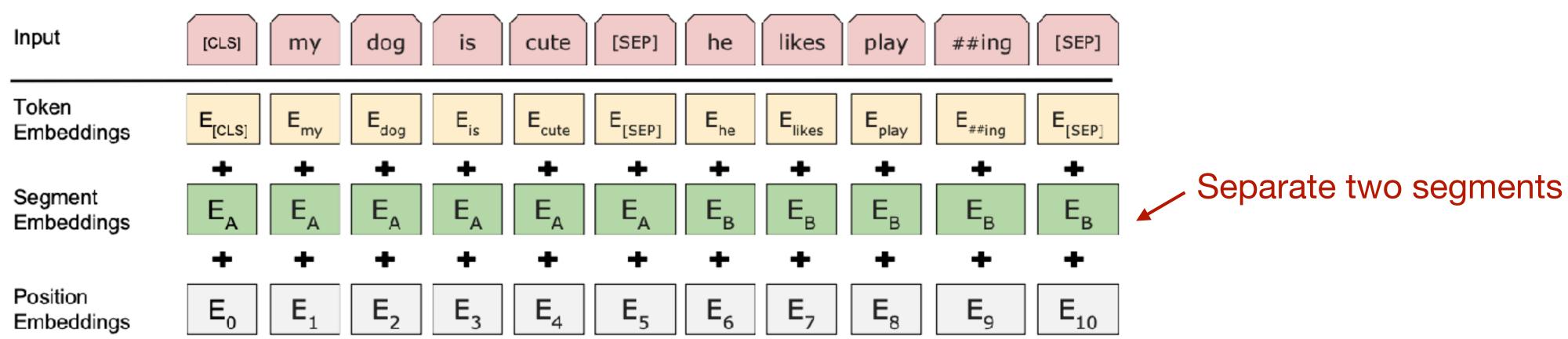
They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

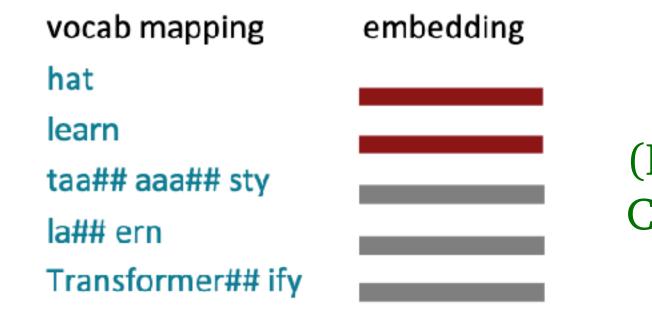
BERT pre-training

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)



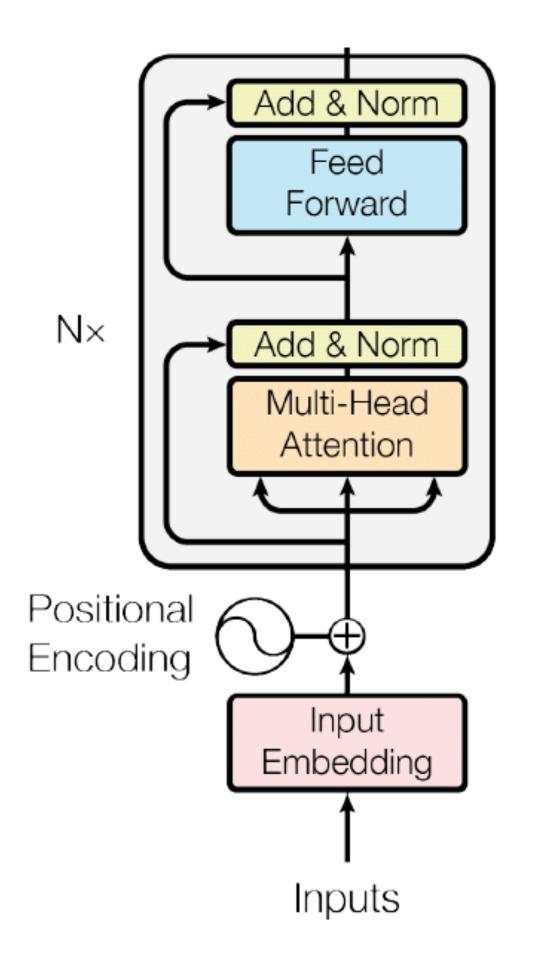
• Input embeddings:





(Image: Stanford CS224N)

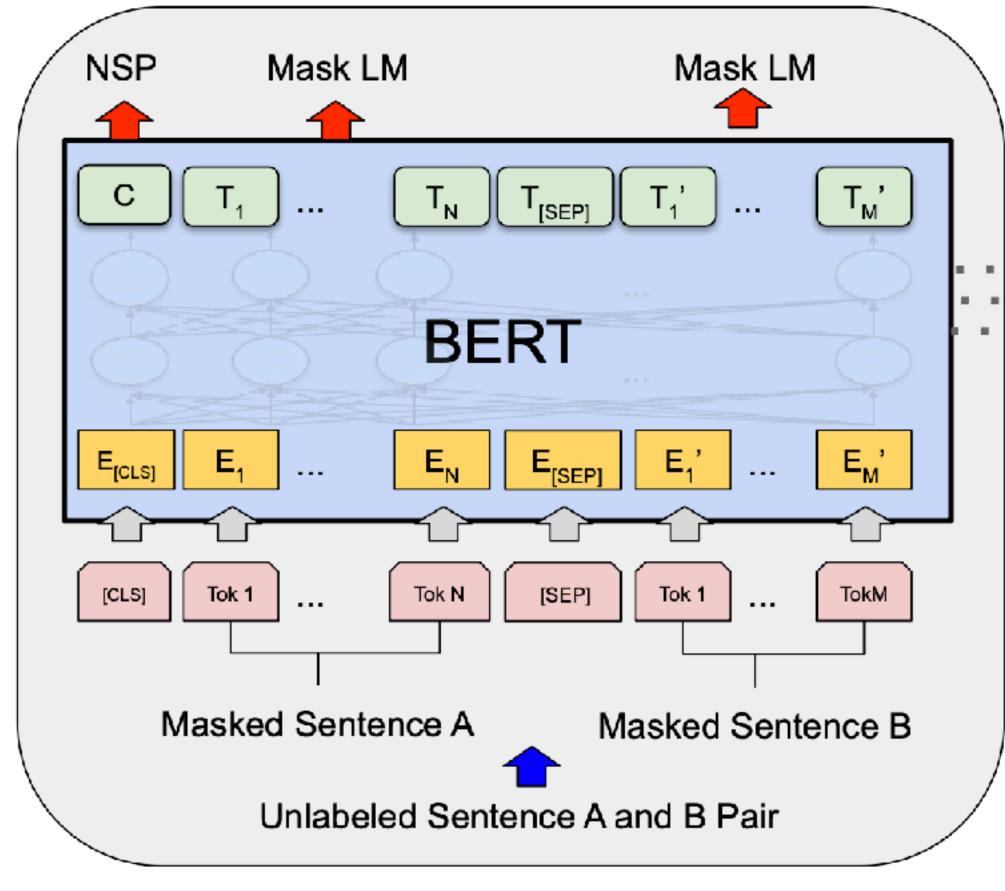
BERT pre-training



- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
- Max sequence size: 512 wordpiece tokens (roughly 256 and 256 for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k

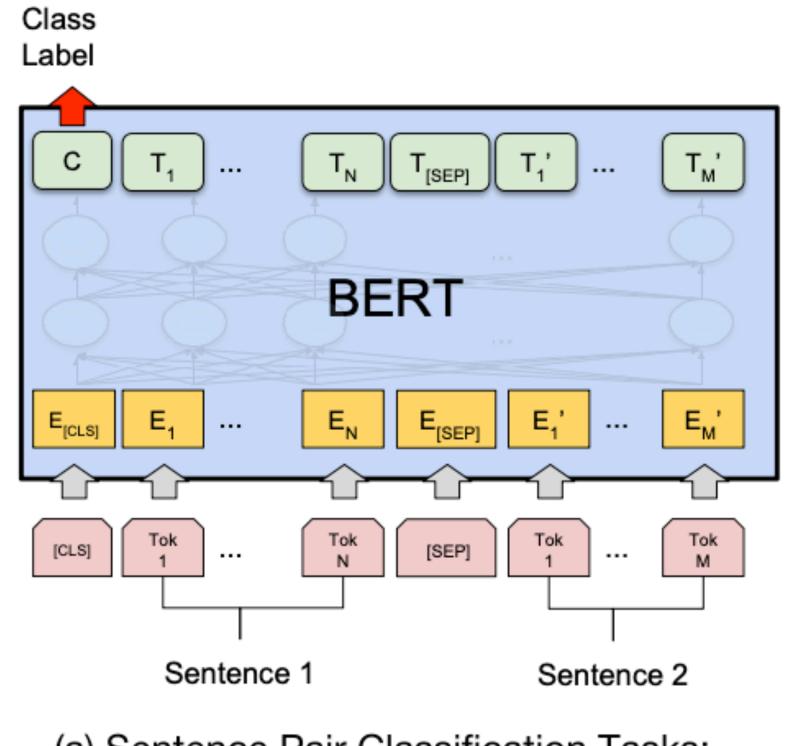
BERT pre-training



Pre-training

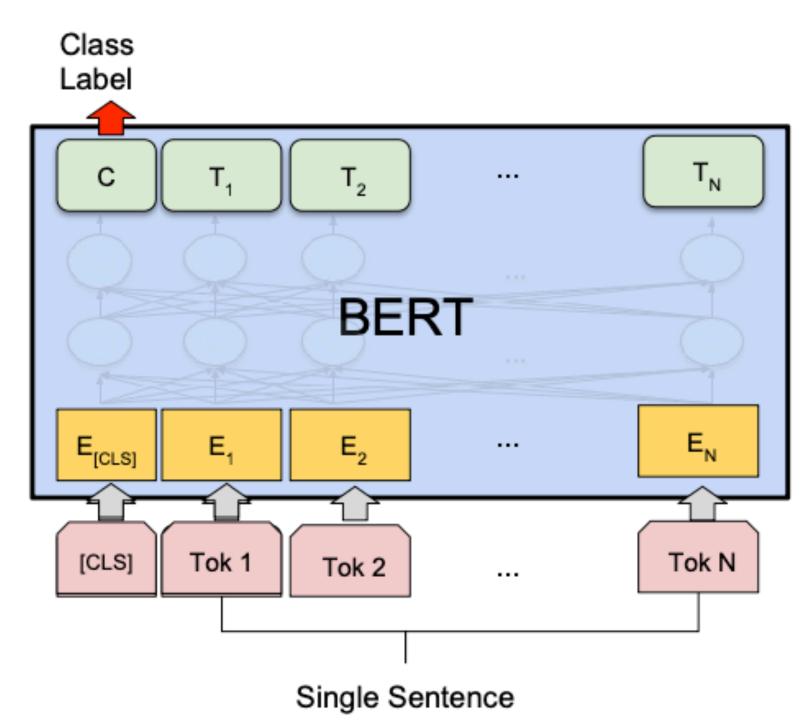
- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

BERT fine-tuning



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

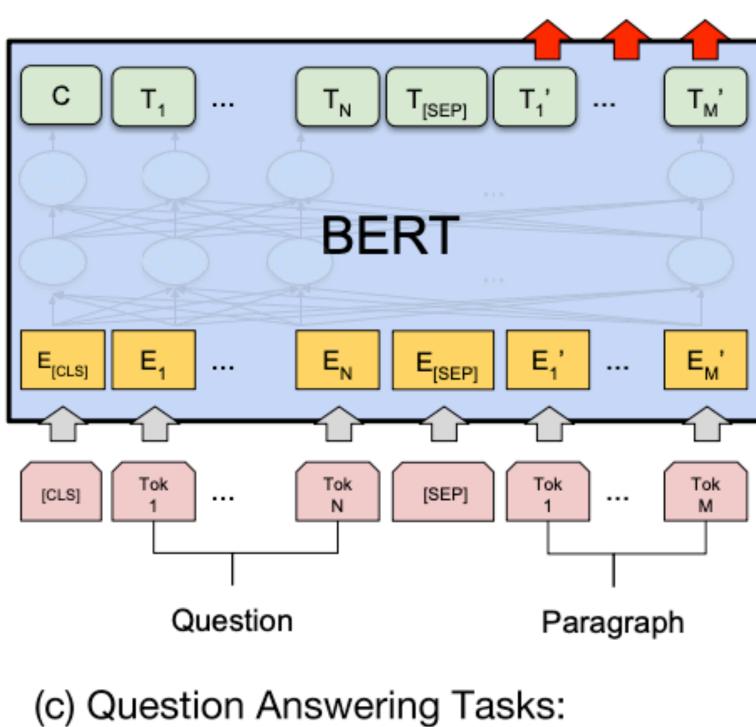
- "Pre-train once, finetune many times."
 - sentence-level tasks



(b) Single Sentence Classification Tasks: SST-2, CoLA

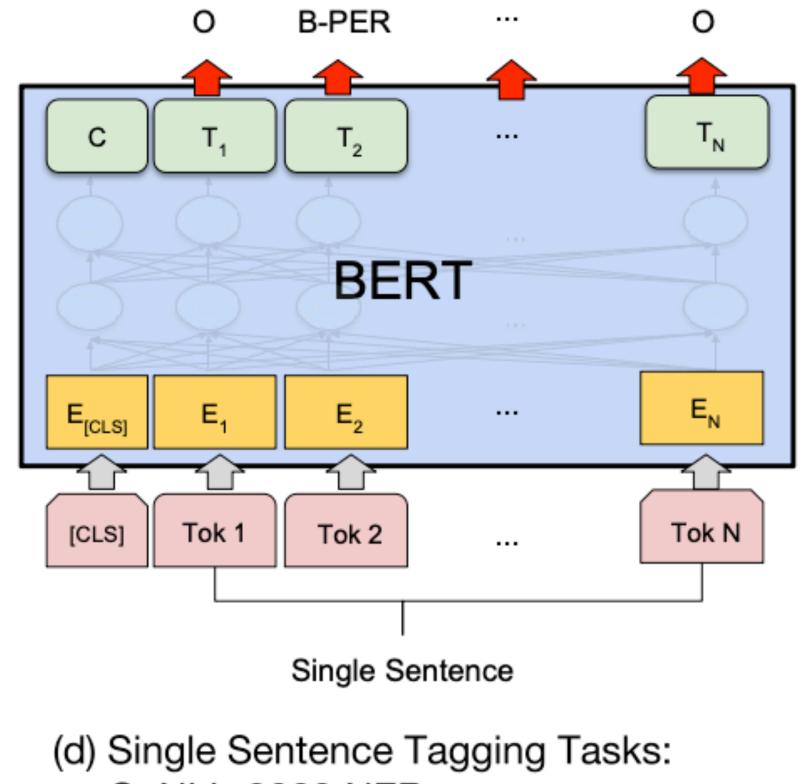
BERT fine-tuning

Start/End Span



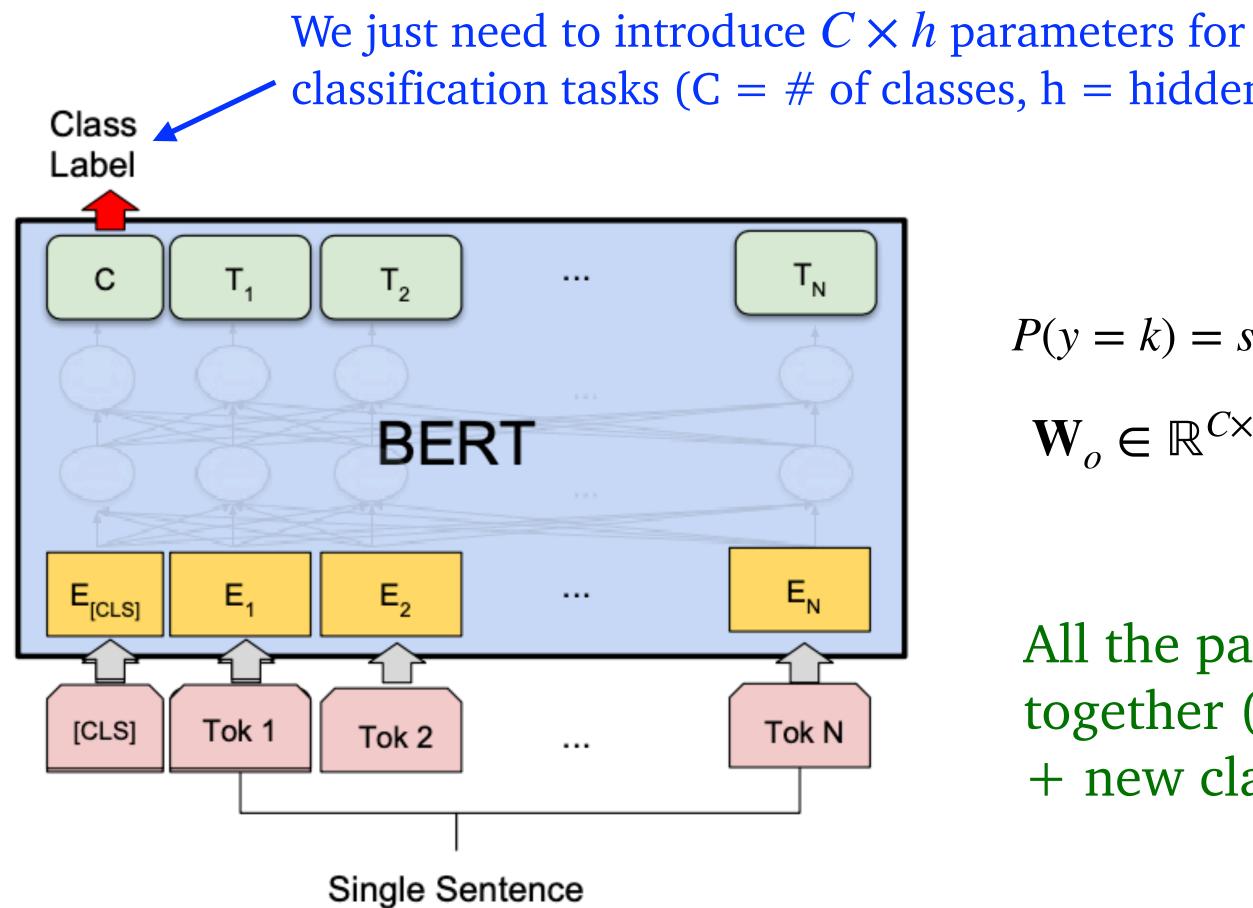
SQuAD v1.1

- "Pretrain once, finetune many times."
 - token-level tasks



CoNLL-2003 NER

Example: sentiment classification

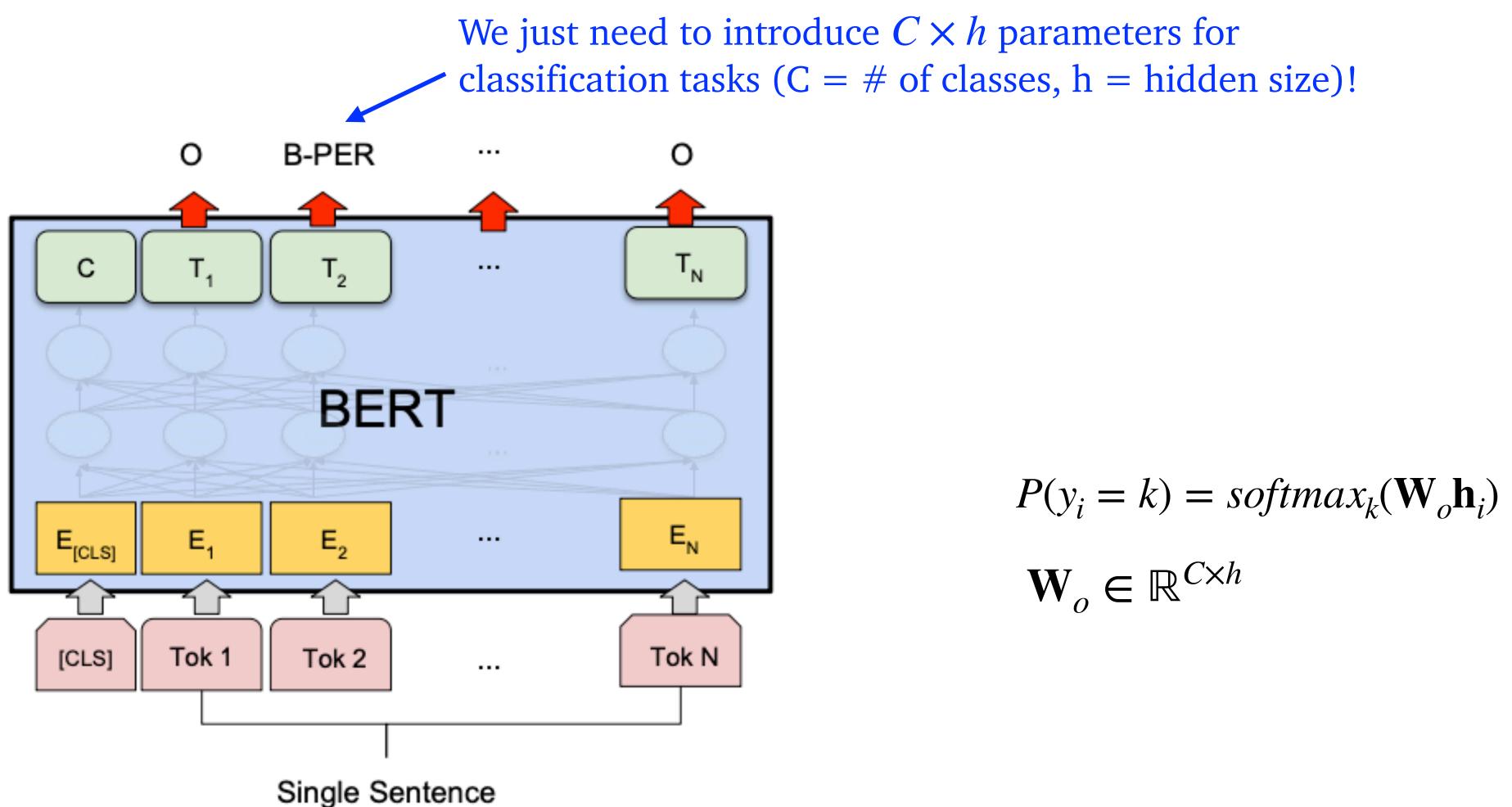


classification tasks (C = # of classes, h = hidden size)!

$$P(y = k) = softmax_{k}(\mathbf{W}_{o}\mathbf{h}_{[CLS]})$$
$$\mathbf{W}_{o} \in \mathbb{R}^{C \times h}$$

All the parameters will be learned together (original BERT parameters + new classifier parameters)

Example: named entity recognition (NER)

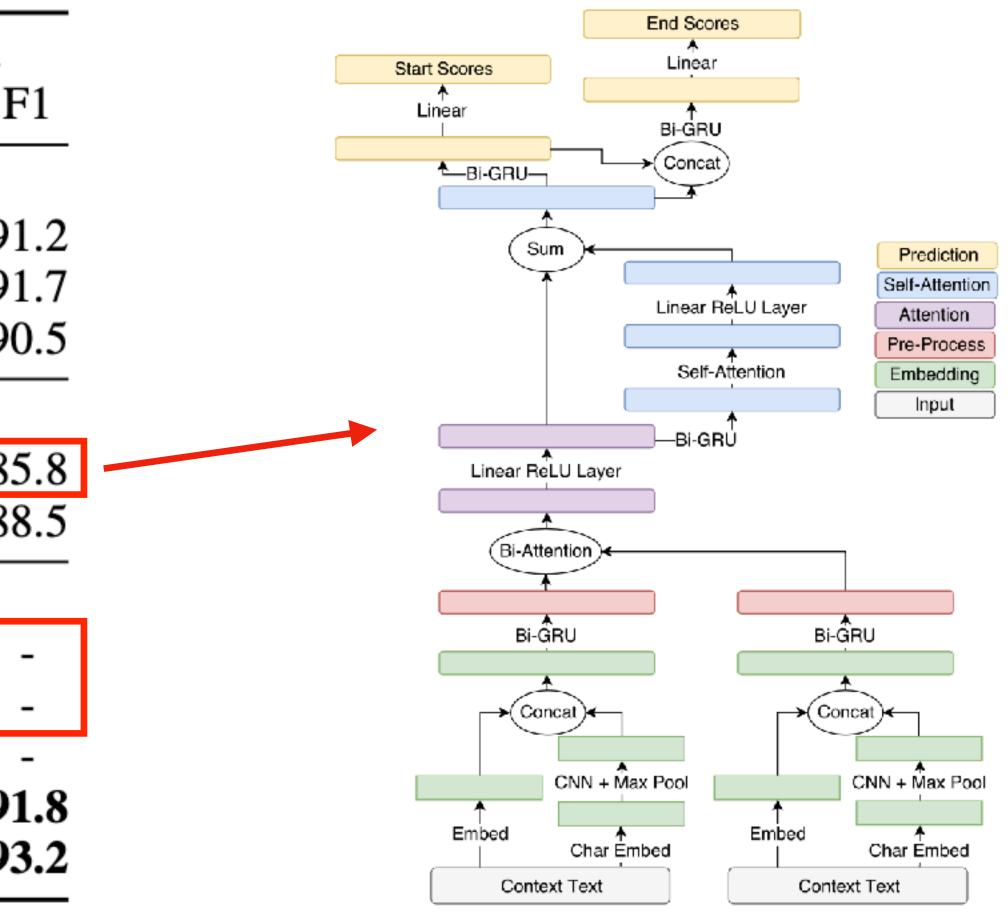


Experimental results: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avera
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Experimental results: SQuAD

System	D	ev	Test						
	EM	F1	EM	F					
Top Leaderboard Systems	s (Dec	10th,	2018)						
Human	-	-	82.3	9					
#1 Ensemble - nlnet	-	-	86.0	9					
#2 Ensemble - QANet	-	-	84.5	9(
Published									
BiDAF+ELMo (Single)	-	85.6	-	8					
R.M. Reader (Ensemble)	81.2	87.9	82.3	88					
Ours									
BERT _{BASE} (Single)	80.8	88.5	-						
BERT _{LARGE} (Single)	84.1	90.9	-						
BERT _{LARGE} (Ensemble)	85.8	91.8	-						
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91					
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93					

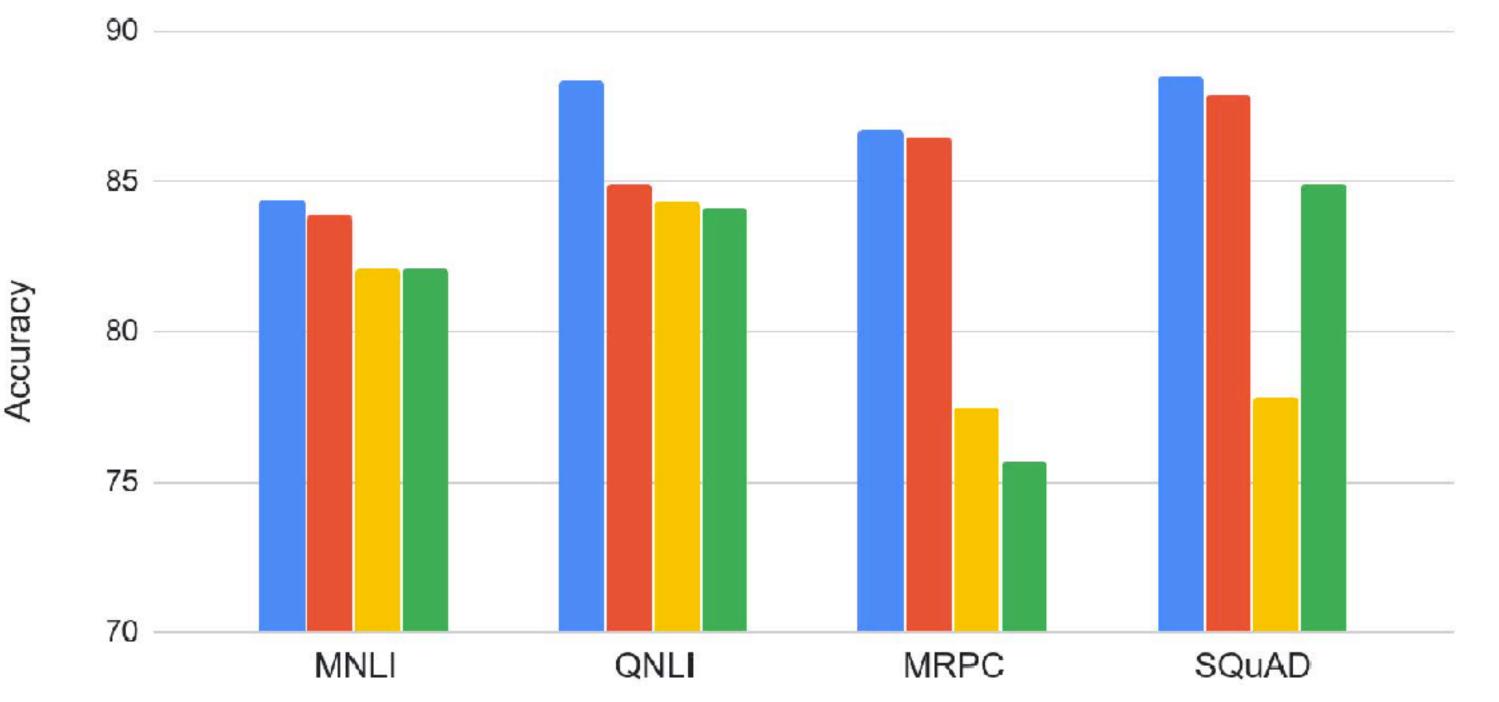


SQuAD = Stanford Question Answering dataset

Ablation study: pre-training tasks

Effect of Pre-training Task

BERT-Base No Next Sent Left-to-Right & No Next Sent Left-to-Right & No Next Sent + BiLSTM



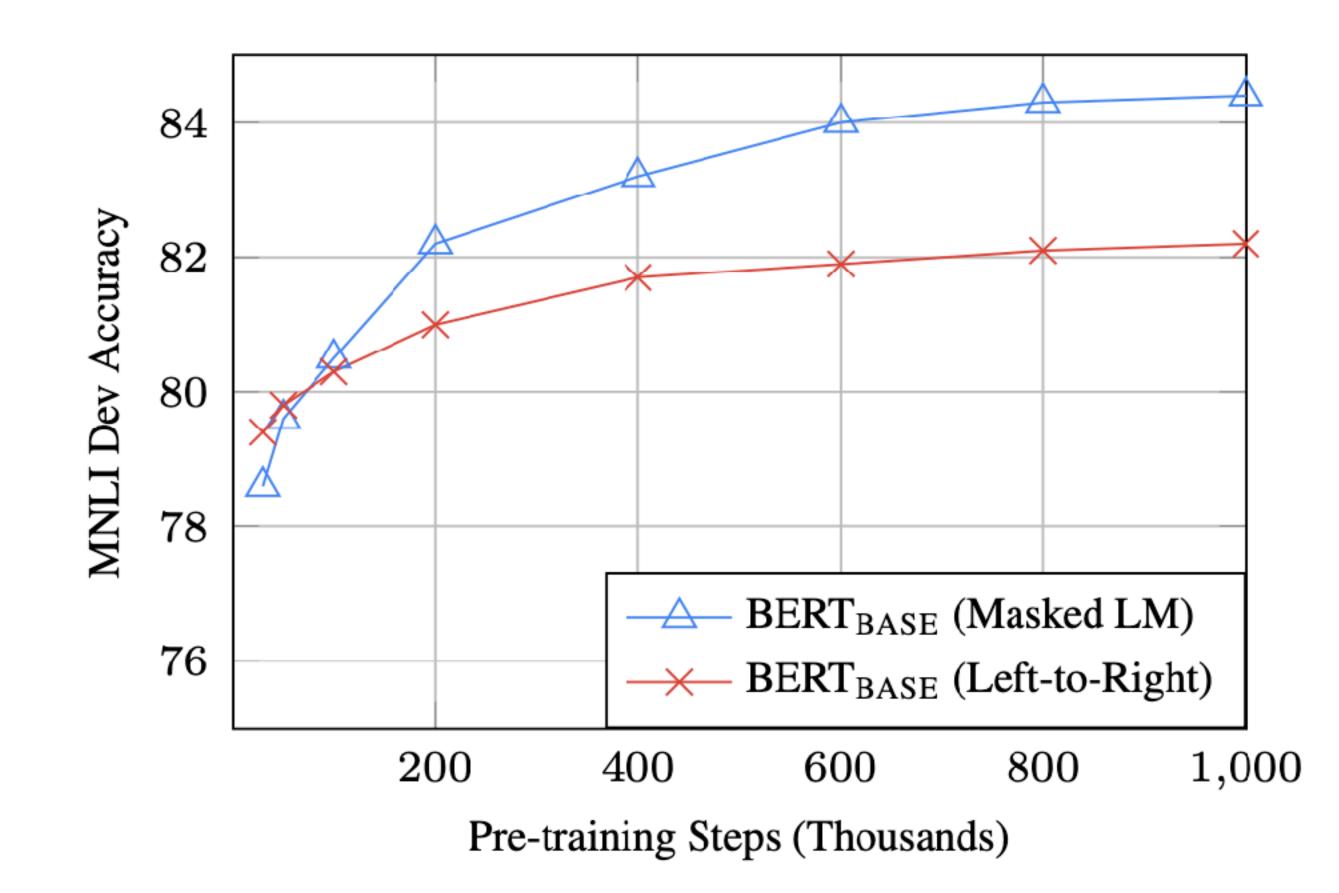
- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

Ablation study: model sizes

# layers	hidde size		# of eads /					
Hyperparams				Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

The bigger, the better!

Ablation study: training efficiency

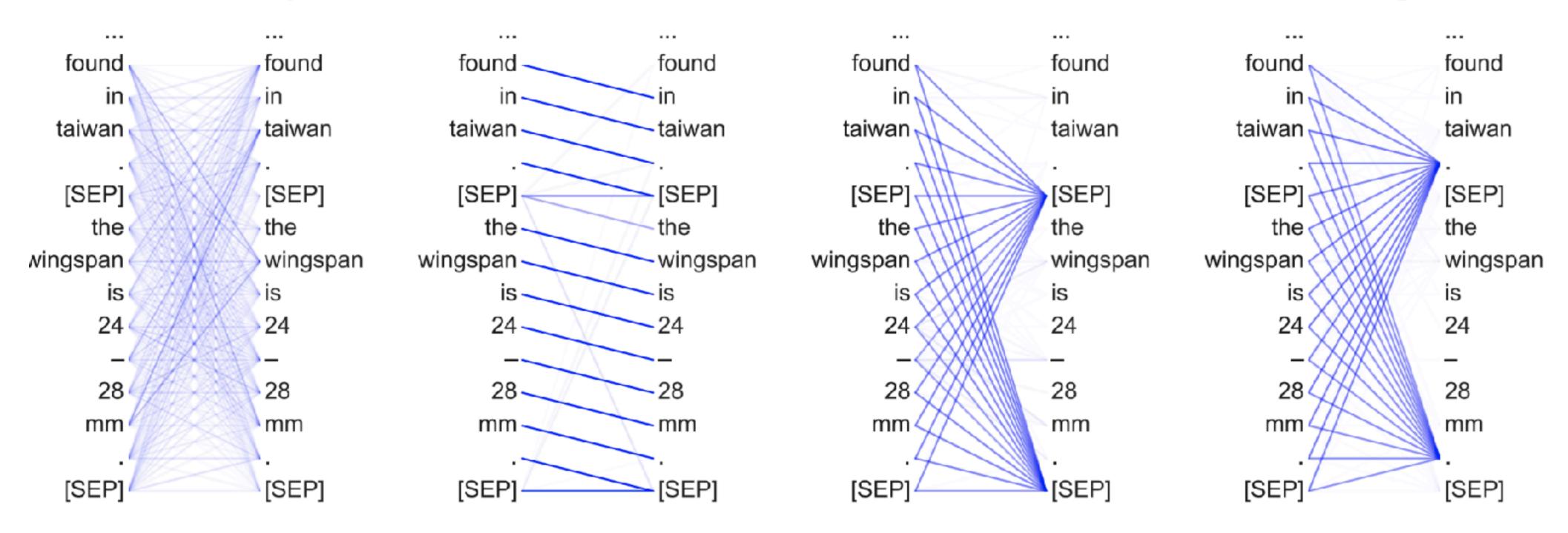


MLM takes slightly longer to converge because it only predicts 15% of tokens

What does BERT learn?

Head 1-1 Attends broadly

Head 3-1 Attends to next token



(Clark et al., 2019) What Does BERT Look At? An Analysis of BERT's Attention

Head 8-7 Attends to [SEP]

Head 11-6 Attends to periods

Limitations of pre-trained encoders

- Why not use pre-trained encoders for everything?
- If your task involves generating sequences, BERT and other pre-trained encoders don't naturally lead to nice autoregressive (1-word-at-a-time) generation methods.
- Might want to use a pre-trained decoder

Slide credit: John Hewitt, Stanford CS224N

Pre-training for three types of architectures

- The neural architecture influences the type of pre-training and natural use cases:
 - **Encoders**: Gets bidirectional context
 - **Encoder-decoders**: Gets good parts of encoders and decoders? **Objective:** Span corruption!
 - placeholders; decode the spans that were removed. - **Decoders**: Language models!
- Replace different length spans from the input with
 - **Inputs**: Thank you <X> me to your party <Y> week
 - **Targets**: <X> for inviting <Y> last <Z>

Pre-training for three types of architectures

- cases:
 - **Encoders**: Gets bidirectional context

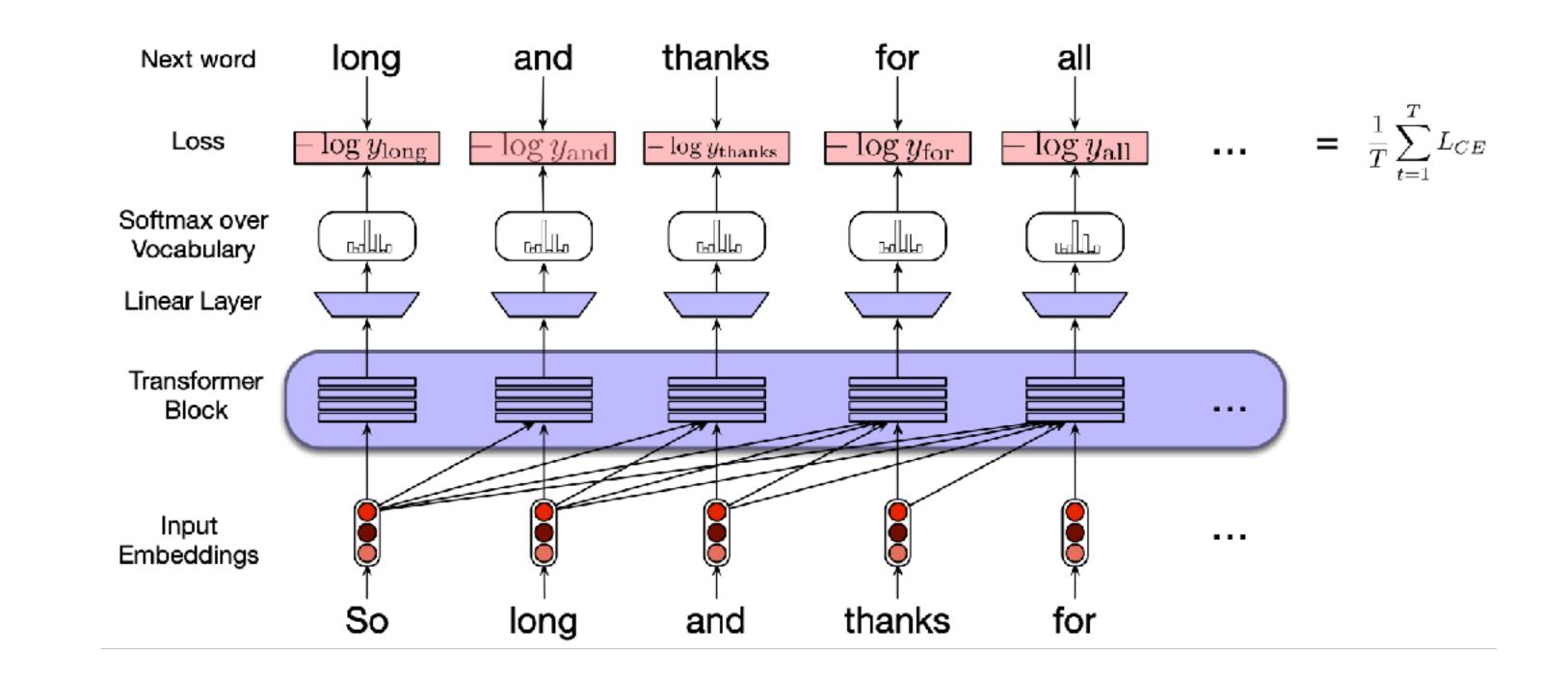
- Encoder-decoders: Gets good parts of encoders and decoders?

Decoders: Language models!

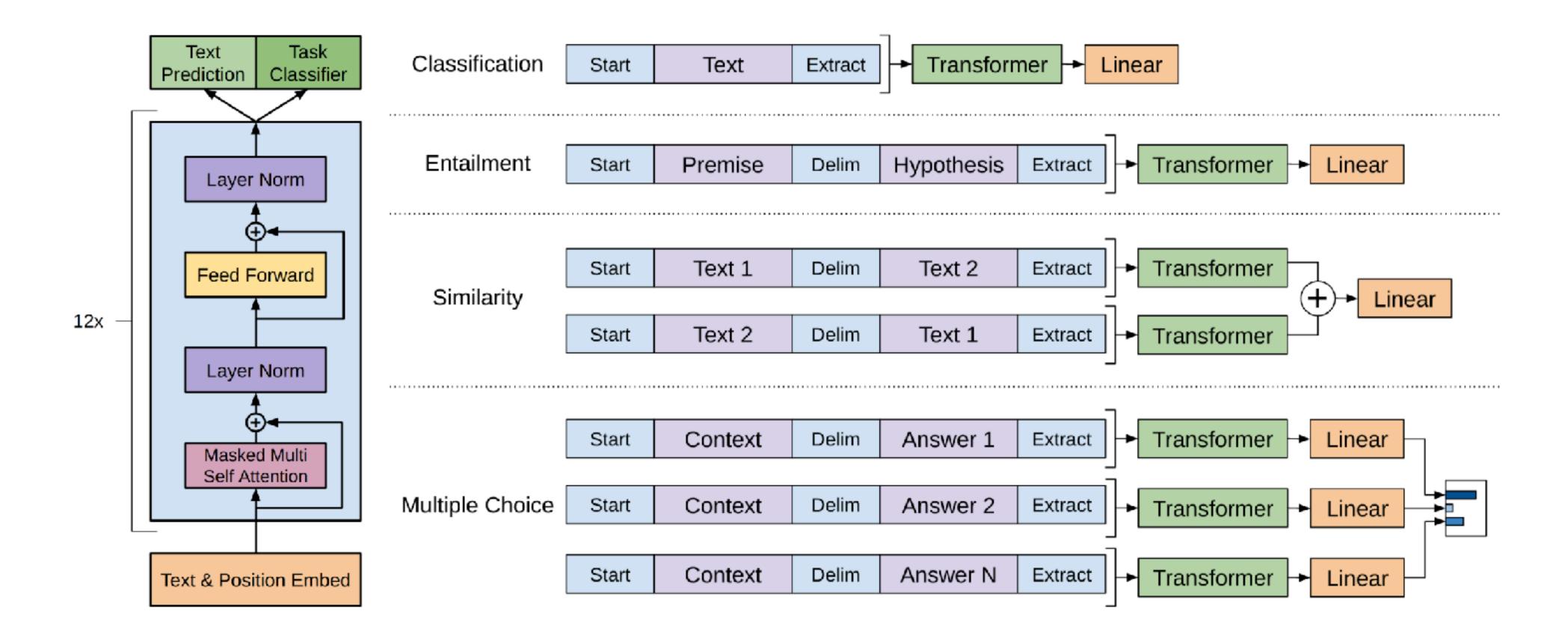
• The neural architecture influences the type of pre-training and natural use

Generative Pre-Training (GPT)

- Use a Transformer decoder (unidirectional; left-to-right) instead of LSTMs
- Use language modeling as a pre-training objective
- Trained on longer segments of text (512 BPE tokens), not just single sentences



• "Fine-tune" the entire set of model parameters on various downstream tasks



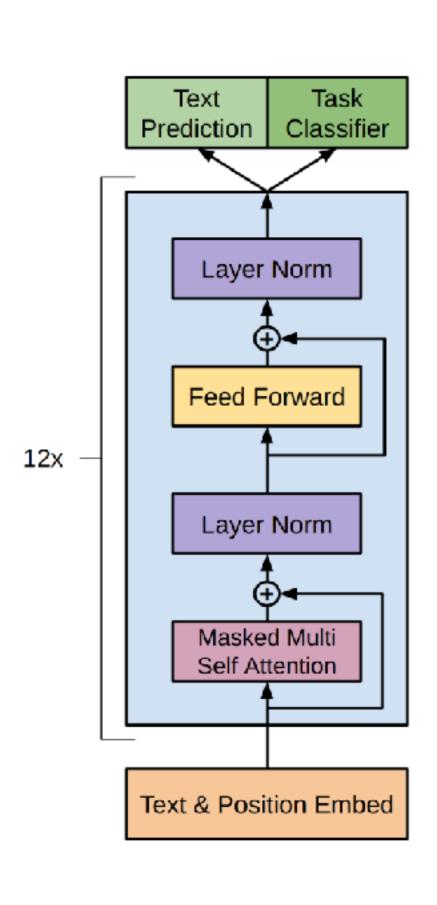
Generative Pre-Training (GPT)

(Radford et al, 2018): Improving Language Understanding by Generative Pre-Training

GPT: More details

parameters

- Max sequence size: 512 wordpiece tokens
- Trained for 100 epochs, batch size 64



12 layers, 768 hidden size, 12 attention heads, 110M Same as BERT-base

Recall: BERT was trained on this + Wikipedia! • Training corpus: BooksCorpus (0.8B)

Experimental results: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Averag
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

- Which of the following statements is INCORRECT?
 - (A) BERT was trained on more data than ELMo
 - (B) BERT builds on Transformer encoder, and GPT builds on Transformer decoder
 - (C) ELMo requires different model architectures for different tasks
 - (D) BERT was trained on data with longer contexts compared to GPT
 - (D) is correct.

ELMo vs GPT vs BERT

