Go to

join.iClicker.com HXFY

COS 484

Natural Language Processing

L12: Seq2seq models + attention

Spring 2025

Final project guideline

- **Deadline**: March 28th 11:59pm ullet
 - Submission via Gradescope (use group submission; add your team members!) •
- **Options:**
 - (a) Reproducing a paper highly encouraged We have curated a list for paper suggestions
 - ullet
- We have posted project guidelines on the website ullet

A recent ACL/NAACL/EMNLP/COLM paper; NLP papers in NeurIPS/ICLR/ICML are fine too!

(b) Complete a research project - we ask you to get approval by making a private Ed post

Final project guideline

How to do NLP research in 2025?

- Route #1: call LLM APIs (e.g., OpenAI, Claude)
- Route #2: download an open-weight model and run/fine-tune it on GPUs (e.g., Llama-3, Gemma-3 models)
- Please think carefully about your needs and make it as concrete as possible in your proposal
 - Some models are cheaper to call
 - Small language models are incredibly powerful (e.g., llama 3.2, gemma3 1b models)
- We will reimburse each team Colab Pro (2 months) and/or API credits up to a small budget
- We encourage you to explore other computing or free LLM API resources

Neural machine translation (NMT)

ulletto-end neural network

> **Sequence to Sequence Learning** with Neural Networks

Ilya Sutskever Google ilyasu@google.com

Oriol Vinyals Google vinyals@google.com

(Sutskever et al., 2014)

The neural network architecture is called a sequence-to-sequence model (aka ulletseq2seq) and it involves two RNNs

Neural Machine Translation (NMT) is a way to do machine translation with a single end-

Quoc V. Le Google qvl@google.com

Ilya Sutskever

Google's NMT system in 2016

RESEARCH > PUBLICATIONS

Google's Neural Machine **Translation System: Bridging** the Gap between Human and Machine Translation

	PBMT	GNMT	Human	Relative
				Improvement
$English \rightarrow Spanish$	4.885	5.428	5.504	87%
$\mathbf{English} \to \mathbf{French}$	4.932	5.295	5.496	64%
$\mathbf{English} \to \mathbf{Chinese}$	4.035	4.594	4.987	58%
$\text{Spanish} \to \text{English}$	4.872	5.187	5.372	63%
French \rightarrow English	5.046	5.343	5.404	83%
$\mathbf{Chinese} \to \mathbf{English}$	3.694	4.263	4.636	60%

(Wu et al., 2016): Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Table 10: Mean of side-by-side scores on production data

It is called an **encoder-decoder** architecture

- The encoder is an RNN to read the input sequence (source language)
- The decoder is another RNN to generate output word by word (target language)

Image: <u>https://d2I.ai/chapter_recurrent-modern/seq2seq.html</u>

Seq2seq: Encoder

Sentence: hello world .

(encoded representation)

Seq2seq: Decoder

• A conditional language model

Recap: recurrent neural language models

$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$

$$\hat{\mathbf{y}}_t = softmax(\mathbf{W}_o\mathbf{h}_t)$$

Training loss:

$$L(\theta) = -\frac{1}{n} \sum_{t=1}^{n} \log \hat{\mathbf{y}}_{t-1}(w_t)$$

IS

•••

Trainable parameters:

$$\boldsymbol{\theta} = \{\mathbf{W}, \mathbf{U}, \mathbf{b}, \mathbf{W}_o, \mathbf{E}\}$$

Seq2seq: Decoder

- A conditional language model
 - It is a language model because the decoder is predicting the next word of the target sentence
 - Conditional because the predictions are also conditioned on the source sentence through $h^{\it enc}$
- NMT directly calculates $P(\mathbf{w}^{(t)} \mid \mathbf{v})$
 - Denote $\mathbf{w}^{(t)} = y_1, ..., y_T$

$$P(\mathbf{w}^{(t)} | \mathbf{w}^{(s)}) = P(y_1 | \mathbf{w}^{(s)})P(y_2 | y_1, \mathbf{w}^{(s)})$$

 $\hat{\mathbf{y}}_t = softmax(\mathbf{W}_o\mathbf{h}_t) P($

$$\mathbf{W}^{(s)}$$

 $P(y_3 | y_1, y_2, \mathbf{w}^{(s)}) \dots P(y_T | y_1, \dots, y_{T-1}, \mathbf{w}^{(s)})$

$$(y_{t+1} | y_1, ..., y_t, \mathbf{w}^{(s)}) = \hat{\mathbf{y}}_t(y_{t+1})$$

Understanding seq2seq

Which of the following is correct?

- (A) We can use bidirectional RNNs for both encoder and decoder ullet
- (B) The decoder has more parameters because of the output matrix \mathbf{W}_{α} ullet
- (C) The encoder and decoder have separate word embeddings ullet
- (D) The encoder and decoder's parameters are optimized together

Both (C) and (D) are correct.

Understanding seq2seq

Encoder RNN:

- word embeddings $\mathbf{E}^{(s)}$ for source language
- Encoder RNN can be bidirectional!

Decoder RNN:

- word embeddings $\mathbf{E}^{(t)}$ for target language
- Output embedding matrix \mathbf{W}_{o} = can be tied with $\mathbf{E}^{(t)}$
- Decoder RNN has to be unidirectional (left to right)!

• RNN parameters, e.g., $\{W, U, b\}$ for simple RNNs and 4x parameters for LSTMs

RNN parameters, e.g., $\{W, U, b\}$ for simple RNNs and 4x parameters for LSTMs

- Training data: parallel corpus $\{(\mathbf{w}_i^{(s)}, \mathbf{w}_i^{(t)})\}$
- Minimize cross-entropy loss: •

$$\sum_{t=1}^{T} -\log P(y_t | y_1, \dots, y_{t-1}, \mathbf{w})$$
(denote $\mathbf{w}^{(t)} = y_1, \dots$

Back-propagate gradients through both encoder and decoder ullet

Training seq2seq models

Decoding seq2seq models

 Greedy decoding = Compute argmax at every step of decoder to generate word

Exhaustive search is very expensive: arg max $P(y_1, \ldots, y_T | \mathbf{w}^{(s)})$ don't know what T is

- we even $y_1, ..., y_T$

A middle ground: Beam search

- Score of each hypothesis = log probability of sequence so far

$$\sum_{i=1}^{t} \log P(y_i | y_1, \dots, y_{i-1}, \mathbf{w}^{(s)})$$

- Not guaranteed to be optimal
- More efficient than exhaustive search

• At every step, keep track of the k most probable partial translations (hypotheses)

Beam search

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^t \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

Beam search

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^{r} \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

Beam search

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

Backtrack

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

Beam search: details

- Different hypotheses may produce $\langle eos \rangle$ token at different time steps
 - When a hypothesis produces $\langle eos \rangle$, stop expanding it and place it aside
- Continue beam search until:
 - All k hypotheses produce $\langle eos \rangle$ OR
 - Hit max decoding limit T
- Select top hypotheses using the normalized likelihood score

 $\frac{1}{T}\sum_{i=1}^{T}\log P($

Otherwise shorter hypotheses have higher scores

$$(y_t | y_1, \dots, y_{t-1}, \mathbf{w}^{(s)})$$

Pros:

- Better performance (more fluent, better use of context, better use of phrase similarities)
- A single neural network to be optimized end-to-end (no individual subcomponents)
- Less human engineering effort same method for all language pairs

Cons:

- NMT is **less interpretable**
- NMT is difficult to control

NMT vs SMT

NMT: the first big success story of NLP deep learning

- 2014: First seq2seq paper published

NMT systems trained by a small group of engineers in a few months

• 2016: Google Translate switches from SMT to NMT - and by 2018 everyone has

• SMT systems, built by hundreds of engineers over many years, outperformed by

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be framed as sequence-to-sequence problems
 - Summarization (long text \rightarrow short text)

. . .

- **Dialogue** (previous utterances \rightarrow next utterance)
- Code generation (natural language \rightarrow Python code)

Summarization

Source Text

munster have signed new zealand international francis saili on a two-year deal . utility back saili , who made his all blacks debut against argentina in 2013 , will move to the province later this year after the completion of his 2015 contractual commitments . the 24-year-old currently plays for auckland-based super rugby side the blues and was part of the new zealand under-20 side that won the junior world championship in italy in 2011 . saili 's signature is something of a coup for munster and head coach anthony foley believes he will be a great addition to their backline . francis saili has signed a two-year deal to join munster and will link up with them later this year . ' we are really pleased that francis has committed his future to the province , ' foley told munster 's official website . ' he is a talented centre with an impressive skill-set and he possesses the physical attributes to excel in the northern hemisphere . ' i believe he will be a great addition to our backline and we look forward to welcoming him to munster . ' saili has been capped twice by new zealand and was part of the under 20 side that won the junior championship in 2011 . saili , who joins all black team-mates dan carter , ma'a nonu , conrad smith and charles piutau in agreeing to ply his trade in the northern hemisphere , is looking forward to a fresh challenge . he said : ' i believe this is a fantastic opportunity for me and i am fortunate to move to a club held in such high regard , with values and traditions i can relate to from my time here in the blues . ' this experience will stand to me as a player and i believe i can continue to improve and grow within the munster set-up . ' as difficult as it is to leave the blues i look forward to the exciting challenge ahead .

Reference summary

utility back francis saili will join up with munster later this year . the new zealand international has signed a two-year contract . saili made his debut for the all blacks against argentina in 2013 .

Sequence-to-sequence + attention summary

dutch international francis [UNK] has signed a two-year deal to join irish [UNK] super rugby side the blues . [UNK] 's signature is something of a coup for munster and his head coach anthony foley believes he will be a great addition to their respective prospects . [UNK] has been capped twice by new zealand .

Pointer-generator summary

new zealand international francis saili will move to the province later this year . utility back saili made his all blacks debut against argentina in 2013 . utility back saili will move to the province later this year .

See et al., 2017: Get To The Point: Summarization with Pointer-Generator Networks

Vinyals and Le 2015: A Neuarl Conversational Model

Human: hello ! Machine: hello ! Human: how are you ? Machine: i 'm good . Human: what 's your name ? Machine: i 'm julia . Human: when were you born ? Machine: july 20th . Human: what year were you born ? Machine: 1977 . Human: where are you from ?

Code generation

All language tasks can be converted into a text-to-text problem!

"translate English to German: That is good."

"cola sentence: The course is jumping well.'

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."

- T5 = Text-to-text Trasnfer Transformer

Sequence-to-sequence: the bottleneck

- A single encoding vector, h^{enc} , needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients

Attention

Attention provides a solution to the bottleneck problem

ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

EMNLP 2015

Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong Hieu Pham **Christopher D. Manning** Computer Science Department, Stanford University, Stanford, CA 94305 {lmthang,hyhieu,manning}@stanford.edu

Attention

- Attention provides a solution to the bottleneck problem
- Key idea: At each time step during decoding, focus on a particular part of source sentence
 - This depends on the **decoder's** current hidden state h_t^{dec} (i.e. an idea of what you are trying to decode)
 - Usually implemented as a probability distribution over the hidden states of the **encoder** (h_i^{enc})

(Next lecture) Transformers = attention is all you need!

Seq2seq: Encoder

hello

world

Seq2seq: Decoder

A conditional language model

Seq2seq with attention

Decoder RNN

Take softmax to turn the scores into a probability distribution

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.

Decoder RNN

(slide credit: Abigail See)

Computing attention

- Encoder hidden states: $h_1^{enc}, \ldots, h_n^{enc}$
 - Decoder hidden state at time *t*: h_t^{dec}
 - First, get attention scores for this time step of decoder:

 $e^{t} = [g(h_{1}^{enc}, h_{t}^{dec}), \dots, g(h_{n}^{enc}, h_{t}^{dec})]$

(n: # of words in

source sentence)

Obtain the attention distribution using softmax:

 $\alpha^{t} = \text{softmax} (e^{t}) \in \mathbb{R}^{n}$

Compute weighted sum of encoder hidden states:

$$a_t = \sum_{i=1}^n \alpha_i^t h_i^{enc} \in \mathbb{R}^h$$

Finally, concatenate with decoder state and pass on to output layer: $\tilde{h}_t = \tanh(\mathbf{W}_c[a_t; h_t^{dec}]) \in \mathbb{R}^h \ \mathbf{W}_c \in \mathbb{R}^{2h \times h}$ $\hat{\mathbf{y}}_t = \operatorname{softmax}(\mathbf{W}_0 \tilde{h}_t)$

https://jalammar.github.io/visualizing-neural-machinetranslation-mechanics-of-seq2seq-models-with-attention/

(credits: Jay Alammar)

Types of attention

- **Dot-product attention** (assumes equal dimensions for h^{enc} and h^{dec}_{t}): 1. $g(h_i^{enc}, h_t^{dec}) = (h_t^{dec})^T h_i^{enc} \in \mathbb{R}$
- **Multiplicative attention:** 2.
- **Additive attention:** 3. $g(h_i^{enc}, h_t^{dec}) = v^T \tanh(W_1 h_i^{enc} + W_2 h_t^{dec}) \in \mathbb{R}$

• Assume encoder hidden states $h_1^{enc}, h_2^{enc}, \ldots, h_n^{enc}$ and a decoder hidden state h_t^{dec}

 $g(h_i^{enc}, h_t^{dec}) = (h_t^{dec})^T W h_i^{enc} \in \mathbb{R}$, where W is a weight matrix (learned)

where W_1 , W_2 are weight matrices (learned) and v is a weight vector (learned)

Dot-product attention:

 $g(h_i^{enc}, h_t^{dec}) = h_t^{dec} \cdot h_i^{enc}$

Assuming we use dot product attention, which input word will have the highest attention value at current time step?

- A) the
- B) cat
- C) sat

The answer is (B)

the: -0.05 + 0.02cat: -0.02 + 0.08sat: 0.01 + 0.04

Attention improves translation

System

Winning WMT'14 system – phrase-based + Existing NMT systems

RNNsearch (Jean et al., 2015)

RNNsearch + unk replace (Jean et al., 2015)

RNNsearch + unk replace + large vocab + en.

Our NMT systems

Base

Base + reverse

Base + reverse + dropout

- Base + reverse + dropout + global attention (
- Base + reverse + dropout + global attention (
- Base + reverse + dropout + local-p attention
- Base + reverse + dropout + local-p attention

Ensemble 8 models + unk replace

	Ppl	BLEU
large LM (Buck et al., 2014)		20.7
		16.5
		19.0
semble 8 models (Jean et al., 2015)		21.6
	10.6	11.3
	9.9	12.6 (+1.3)
	8.1	14.0 (+1.4)
location)	7.3	16.8 (+2.8)
location) + feed input	6.4	18.1 (+1.3)
(general) + feed input		19.0 (+0.9)
(general) + feed input + unk replace	5.9	20.9 (+1.9)
		23.0 (+2.1)

(Luong et al., 2015)

Visualizing attention

Recall: alignment

Vinay			
likes			
python			

(credits: Jay Alammar)

