Attention Is All You Need

The Annotated Transformer

Alexander M. Rush
srush@seas.harvard.edu
Harvard University

http://nlp.seas.harvard.edu/2018/04/03/attention.html
Transformer encoder-decoder

- Both encoder and decoder consist of \(N \) layers

- Each encoder layer has two sub-layers
 - Multi-head self-attention
 - FeedForward

- Each decoder layer has three sub-layers
 - Masked multi-head self-attention
 - Multi-head cross-attention
 - FeedForward

- Decoder: generate output probabilities for predicting next word
Transformer encoder-decoder

```python
class EncoderDecoder(nn.Module):
    
    # A standard Encoder-Decoder architecture.
    # Base for this and many other models.
    
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator

    def forward(self, src, tgt, src_mask, tgt_mask):
        """Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)

    def encode(self, self, src, src_mask):
        return self.encoder(src, src_mask)

    def decode(self, self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self, tgt, memory, src_mask, tgt_mask)
```
Transformer encoder

Layer Normalization
(Ba et al., 2016)

```python
def forward(self, x):
    mean = x.mean(-1, keepdim=True)
    std = x.std(-1, keepdim=True)
    return (self.a_2 * (x - mean)) / 
    (std + self.eps) + self.b_2
```

```python
def forward(self, x, sublayer):
    """Apply residual connection to sublayer fn."
    return x + self.dropout(sublayer(self.norm(x)))
```

class EncoderLayer(nn.Module):
 """Encoder calls self-attn and feed forward."
 def __init__(self, size, self_attn, feed_forward, dropout):
 super(EncoderLayer, self).__init__()
 self.self_attn = self_attn
 self.feed_forward = feed_forward
 sublayer = SublayerConnection(size, dropout)
 self.sublayer = clones(sublayer, 2)
 self.size = size

 def forward(self, x, mask):
 """Follow Figure 1 (left) for connections."
 x = self.sublayer[0](x, lambda x:
 self.self_attn(x, x, x, mask))
 return self.sublayer[1](x, self.feed_forward)
```

In the paper:
LayerNorm($x + \text{Sublayer}(x)$)

We will come back to this!
Transformer decoder

```python
class DecoderLayer(nn.Module):
 "Decoder calls self-attn, src-attn, and feed forward."
 def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
 super(DecoderLayer, self).__init__()
 self.self_attn = self_attn
 self.src_attn = src_attn
 self.feed_forward = feed_forward
 sublayer = SublayerConnection(size, dropout)
 self.sublayer = clones(sublayer, 3)
 self.size = size

 def forward(self, x, memory, s_mask, t_mask):
 "Follow Figure 1 (right) for connections."
 m = memory
 x = self.sublayer[0](x, lambda x:
 self.self_attn(x, x, x, t_mask))
 x = self.sublayer[1](x, lambda x:
 self.src_attn(x, m, m, s_mask))
 return self.sublayer[2](x, self.feed_forward)
```

self-attention

cross-attention
Attention

**Encoder**

\[
x = \text{self.sublayer}[0](x, \lambda x:\text{self.self_attn}(x, x, x, \text{mask}))
\]

**Decoder**

\[
x = \text{self.sublayer}[0](x, \lambda x:\text{self.self_attn}(x, x, x, t\_\text{mask}))
\]

\[
x = \text{self.sublayer}[1](x, \lambda x:\text{self.src_attn}(x, m, m, s\_\text{mask}))
\]

**Masked self-attention**

```python
def subsequent_mask(size):
 "Mask out subsequent positions."
 attn_shape = (1, size, size)
 subsequent_mask = np.triu(np.ones(attn_shape), k=1)
 return torch.from_numpy(
 subsequent_mask.astype('uint8')) == 0
```
Attention \( (Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) V \)

```python
def attention(query, key, value, mask=None, dropout=None):
 "Compute 'Scaled Dot Product Attention'"
 d_k = query.size(-1)
 key_t = key.transpose(-2, -1)
 scores = torch.matmul(query, key_t) / math.sqrt(d_k)
 if mask is not None:
 scores = scores.masked_fill(mask == 0, -1e9)
 p_attn = F.softmax(scores, dim=-1)
 if dropout is not None:
 p_attn = dropout(p_attn)
 return torch.matmul(p_attn, value), p_attn
```

```python
class MultiHeadedAttention(nn.Module):
 def __init__(self, h, d_model, dropout=0.1):
 "Take in model size and number of heads."
 super(MultiHeadedAttention, self).__init__()
 assert d_model % h == 0
 # We assume d_v always equals d_k
 self.d_k = d_model // h
 self.h = h
 self.linears = clones(nn.Linear(d_model, d_model), 4)
 self.attn = None
 self.dropout = nn.Dropout(p=dropout)

 def forward(self, query, key, value, mask=None):
 "Implements Figure 2"
 if mask is not None:
 # Same mask applied to all h heads.
 mask = mask.unsqueeze(1)
 nb = query.size(0)

 # 1) Do all the linear projections in batch from d_model
 query, key, value = [
 l(x).view(nb, -1, self.h, self.d_k).transpose(1, 2)
 for l, x in zip(self.linears, (query, key, value))]

 # 2) Apply attention on all the projected vectors in batch
 x, self_attn = attention(query, key, value, mask=mask, dropout=self.dropout)

 # 3) "Concat" using a view and apply a final linear.
 x = x.transpose(1, 2).contiguous().view(nb, -1, self.h * self.d_k)
 return self.linears[-1](x)
```

Set masked positions to -1e9 before softmax

Linear projection for all the heads, split them into different slices later
Other interesting things

- Decoder: Input and output embeddings are tied

- Positional encodings

- A dedicated optimizer

\[ lrate = d_{\text{model}}^{-0.5} \cdot \min(step\_num^{-0.5}, step\_num \cdot warmup\_steps^{-1.5}) \]

- Label smoothing

\[ p'(y|x_i) = (1 - \varepsilon)p(y|x_i) + \varepsilon u(y|x_i) \]
\[ = \begin{cases} 
1 - \varepsilon + \varepsilon u(y|x_i) & \text{if } y = y_i \\
\varepsilon u(y|x_i) & \text{otherwise}
\end{cases} \]
Breakout discussion

• Group 1 (Danqi)
  • Which parts of Transformer implementation (design, optimization, regularization) that
    you find interesting, surprising or counter-intuitive?

• Group 2 (Kaiyu)
  • Which parts of Transformer implementation (design, optimization, regularization) that
    you find interesting, surprising or counter-intuitive?

• Group 3 (Mingzhe)
  • How to improve Transformers?

• Group 4 (Zexuan)
  • How to improve Transformers?

Use the remaining time for free-form discussion!!!
How to improve Transformers?

- Re-order the sub-layers...

(a) Interleaved Transformer

(b) Sandwich Transformer

(Press et al., 2020) Improving Transformer Models by Reordering their Sublayers
How to improve Transformers?

- Pre-LN is more robust than post-LN

(Liu et al., 2020) Understanding the Difficulty of Training Transformers
How to improve Transformers?

- Scale up to long sequences (and avoid quadratic computation!)

(Zaheer et al., 2020) Big Bird: Transformers for Longer Sequences
(Choromanski et al., 2020) Rethinking Attention with Performers
How to improve Transformers?

- Relative positional representations

\[ a_{2,1}^V = w_{-1}^V \quad a_{2,4}^V = w_2^V \]
\[ a_{2,1}^K = w_{-1}^K \quad a_{2,4}^K = w_2^K \]
\[ a_{4,n}^V = w_k^V \]
\[ a_{4,n}^K = w_k^K \]

(Shaw et al., 2018) Self-Attention with Relative Position Representations
How to improve Transformers?

- Relative positional encoding + Segment recurrence