
COS 484: Natural Language Processing (Due: 03/03/2025)

Assignment #2

Instructors: Danqi Chen, Tri Dao, Vikram Ramaswamy

Course Policy: Read all the instructions below carefully before you start working on the assignment and
before you make a submission. The course assignment policy is available at https://princeton-nlp.github.
io/cos484/. When you’re ready to submit, please follow the instructions found here: http://bit.ly/COS_

NLP_Submission

• This assignment contains 2 parts, a theoretical and a programming part. The former consists of 3 problems,
and the latter has 2, for a total of 5 problems.

• We highly recommended that you typeset your submissions in LATEX. Use the template provided on
the website for your answers. If you have never used LATEX, you can refer to the short guide here:
http://bit.ly/WorkingWithLaTeX. Include your name and NetIDs with your submission. If you wish
to submit hand-written answers, you can scan and upload the pdf.

• Assignments must be uploaded to Gradescope before class (01:59pm Eastern) on the due date men-
tioned above.

• As per the late-day policy outlined on the course website, you have 4 late days to use at your discretion
throughout the semester. Once you run out of late days, late submissions will incur a penalty of 10% for
each day, up to a maximum of 3 days beyond which submissions will not be accepted.

• All programming problems in this class will be completed in Google Colab using Python. If you would
like to get familiar with this environment, you may complete the problems in this introductory Colab
notebook (This will not be graded). If you’ve never worked with Google Colab before, take a look through
this introduction guide: http://bit.ly/WorkingWithColab. The answers to the written questions
proposed in the programming part should be answered in the Colab notebook.
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Theoretical Part

Submission Policy: Submit a single PDF for the answers to all questions in this part.

Problem 1: Hidden Markov Models for Tagging (13 points)

We are interested in labeling each word in the following corpus of text with a set of sentiment tags:

the bread smells delicious

the coffee was bitter and awful

The set of tags available to us is {+,−, O}, representing positive sentiment, negative sentiment and neutral
sentiment, respectively. We assume Markov assumption and output independence, i.e. each tag only depends
on the previous tag and each word only depends on its corresponding tag. This results in a hidden Markov
model (HMM) over the tags and words. We are also given the following parameters of the HMM:

and awful bitter bread coffee delicious smells the was
+ 0.0 0.0 0.1 0.05 0.05 0.7 0.05 0.0 0.05
- 0.0 0.7 0.15 0.0 0.05 0.0 0.05 0.0 0.05
O 0.2 0.05 0.05 0.1 0.1 0.05 0.05 0.2 0.2

Table 1: Emission probabilities, ϕ. Rows denote hidden tags yj and columns are observations xj .

+ - O
∅ 0.3 0.3 0.4
+ 0.4 0.2 0.4
- 0.1 0.5 0.4
O 0.2 0.2 0.6

Table 2: Transition probabilities, θ. Rows denote tags yj and columns are over yj+1. Transition from null state
represents the initial probability of a state, i.e. θ∅→+ = π(+).

(a) (4 points) Write down the formula to compute the joint probability of the tag sequence y = ⟨O,O,O,+⟩
and the sentence x = ⟨the bread smells delicious⟩ given the above parameters.

(b) (9 points) Given a word sequence x = ⟨coffee smells bitter⟩, what is the least likely tag sequence for
this text using Viterbi decoding? Show your steps.
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Problem 2: Understanding word2vec (10 points)

Given a sequence of words w1, . . . , wT and context size c, the training objective of skip-gram that we learned
in the class is:

L = − 1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

logP (wt+j | wt),

where P (wo | wt) is defined as:

P (wo | wt) =
exp

(
u⊺
wt
vwo

)∑
k∈V exp (u⊺

wtvk)
,

where uk represents the “target” vector and vk represents the “context” vector, for every k ∈ V .

(a)(5 points) Derive the following gradient (probability w.r.t context vector):

−∂ logP (wo | wt)

∂vwo

(b)(5 points) Assume we train this model on a large corpus (e.g. English Wikipedia). Describe at least two
effects of choosing different context sizes c for training the word vectors uw, e.g. what would you expect if we
used context size c = 1, 5, or 100?



– Assignment #2 4

Problem 3: Named entity recognition with neural networks (14 points)

Let us consider a simple neural network model that can be used for named entity recognition (NER). We
can have the network predict a label for each token separately using features from a window around it.

Figure 1: An example of an input sequence and the first window (x̃1) from this sequence.

Let x
def
= x1,x2, . . . ,xT be an input sequence of length T and y

def
= y1,y2, . . . ,yT similarly be an output

sequence. Here, xt ∈ R1×|V | is a one-hot (row) vector1 representing the t-th word for a vocabulary V . yt ∈ R1×C

is also a one-hot row vector representing the ground truth label for xt, where C is the number of labels.
In a window-based classifier, every input sequence is split into T new data points, each representing a

window and its label. Each data point is constructed using a window of size 2w + 1 centered at xt: x̃t
def
=

[xt−w, . . . ,xt, . . . ,xt+w]. We pad special start tokens (<START>) to the beginning of the sentence and special
end tokens (<END>) to the end of the sentence when constructing windows centered at starting and ending
tokens. For example, a window of size 1 around “Jim” in the sentence above would be [<START>, Jim, bought],
and a window of size 2 would be [<START>, <START>, Jim, bought, 300].

We can use a simple feedforward neural net that uses a word embedding layer, a single hidden layer with a
Sigmoid activation, a Softmax output layer and the cross-entropy loss to predict yt from x̃t:

et = [xt−wE, . . . ,xtE, . . . ,xt+wE]

ht = Sigmoid(etW
⊤ + b1)

ŷt = Softmax(htU
⊤ + b2)

J = CE(yt, ŷt) = −
∑
i

yt,i log(ŷt,i),

Here, E ∈ R|V |×D are word embeddings which are learned during training, where D is the size of the word
embedding. Note that as xt is a one-hot vector, xtE denotes the row vector of the embedding matrix that
corresponds to the embedding of xt. ht ∈ R1×H , where H is the size of the hidden layer, and ŷt ∈ R1×C , where
C = 5 is the number of classes being predicted: PER (person), ORG (organization), LOC (location), MISC
(miscellaneous), and O (non-entity).

Note that the notations we used here are slightly different from what we have seen in the class, in particular,
we use hU⊤ (here h is a row vector) instead of Uh (here h is a column vector). This is for better compatability
with the Pytorch convention that you will implement in the programming problems.

(a) (2 points) What are the parameters of this neural network that can be learned from the training data?

(b) (3 points) What are the dimensions of et, W and U if we use a window of size w?

(c) (5 points) What is the computational complexity of predicting labels for a sentence of length T? Please
write down all the different operations performed by the neural network during one forward pass and the com-
putational complexity for each of them. Then sum them up to get the complexity of predicting labels for this
sentence. You may provide your answer in big O notation and in terms of the variables defined in the problem
(T,C, V,D,H,w).
To simplify things, assume that we can get the word embedding xtE by table lookup instead of matrix multipli-

1In general, the term “one-hot” means that the vector consists of 0s in all cells with the exception of a single 1 in a cell used
uniquely to identify the word.

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
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cation (since xt is a one-hot vector), which can be considered as an operation with O(1) complexity.

(d) (4 points) Describe at least 2 modeling limitations of this window-based FFN model for NER.
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Programming Part

Submission Policy: The answers to the written questions for this part should be answered in the Colab
notebook. Do not include the answers to this part in the same PDF as the theory part.

Problem 1: Hidden Markov Model for Named Entity Recognition (30 points)

In the following programming problems, you are going to implement models for the Named Entity Recog-
nition (NER) task. NER is the task to associate the words in a sentence with their proper name tags. For
example, “Marie Curie” may correspond to the tag PER (person) and “Princeton University” may correspond
to the tag ORG (organization). In this programming assignment, will use a total of 5 tags: PER (person), ORG
(organization), LOC (location), MISC (miscellaneous), and O (non-entity). For example, the correct tagging of
the sentence “Steve Jobs founded Apple with Steve Wozniak .” is ⟨PER, PER, O, ORG, O, PER, PER⟩. Note that when
consecutive words constitute a named entity, such as “Steve Jobs” in the previous example, they should both
be tagged as PER.

In programming problem 1, you will implement the hidden Markov model (HMM) for this task.

(a) (8 points) First, implement a bigram hidden markov model (HMM) and estimate its parameters using the
training data. Complete the TODOs in the train() function of the HMM model to update the initial state,
transition and emission probabilities using the train corpus.

The default code performs greedy decoding using your HMM. Report the accuracy you observe on the
training and validation sets. Also report the F-1 score you obtain for each of the 5 classes as well as the
confusion matrix between the different classes for the validation set. Which pair of tags does the model have
most difficulty separating according to the confusion matrix of the validation set?

(b) (8 points) Now, complete the implementation of Viterbi decoding for the HMM model in the function
viterbi decode().

Report the train and validation accuracies. Also report F-1 scores per class and the confusion matrix for
the validation set. What major differences do you observe compared to the matrix in (a)?

Link to notebook: Colab notebook.

Problem 2: Max-Entropy Markov Model for Named Entity Recognition (25 points)

The task is the same as the programming problem above. In programming problem 2, you will implement
the MEMM model for this task.

(a) (6 points) Complete the extract feature function in the MEMM class. We’ve implemented adding word
features to the function, but we want you to add one-hot encoding features for the prior 4 tags. (HINT: You
can use MEMM’s self.tag encoder to help generate one-hot vectors)

(b) (6 points) HMMs depend on the count statistics of the training data to generate predictions. However,
there may be other clues that are useful for NER. For example, words that are single characters followed by
a period (“K.”) might represent an inital in someone’s name. While HMMs cannot deal with these types of
features in general, MEMMs are much more flexible in feature representations. For the MEMM model, add
at least 6 new features to regex features 2 to improve model performance. You should be able to improve
overall test accuracy to around 88% or higher.

Link to notebook: Colab notebook.

https://colab.research.google.com/drive/1Kv0WjNOObl_6h92dW6BKwGeke-Z_towG#scrollTo=X_hx0PKdII9C/usp=sharing
https://colab.research.google.com/drive/1-6Vhysonim8LC5wVmbwTMBh0RzcPELNi#scrollTo=X_hx0PKdII9C/usp=sharing

