
COS 484: Natural Language Processing (Due: 02/17/26)

Assignment #1

Instructor: Tri Dao, Karthik Narasimhan 120 points

Course Policy: Read all the instructions below carefully before you start working on the assignment and
before you make a submission. The course assignment policy is available at https://princeton-nlp.github.
io/cos484/. When you’re ready to submit, please follow the instructions found here: COS 484 - Assignment
Logistics.

• This assignment contains 2 parts, a theoretical and a programming part. The former consists of 3 problems,
and the latter has 2, for a total of 5 problems.

• We highly recommended that you typeset your submissions in LATEX. Use the template provided on the
website for your answers. If you have never used LATEX, you can refer to the short guide here: Working
with LaTeX. Include your name and NetIDs with your submission. If you wish to submit hand-written
answers, you can scan and upload the pdf.

• Assignments must be uploaded to Gradescope by 11:59pm Eastern on the due date mentioned above.

• As per the late-day policy outlined on the course website, you have 4 late days that you can use any
time during the semester, with at most 3 late days per assignment. Once you run out of late days, late
submissions will incur a penalty of 10% for each day, up to a maximum of 3 days beyond which submissions
will not be accepted.

• All programming problems in this class should be completed in Google Colab using Python. If you would
like to get familiar with this environment, you may complete the problems in this introductory Colab
notebook (This will not be graded). If you’ve never worked with Google Colab before, take a look through
this introduction guide: Working With Colab. The answers to the written questions proposed in
the programming part should be answered in your Colab notebook.

• LLM usage policy: You may not consult a Large Language Model (LLM) when working on the
Theoretical part of this assignment. For the Programming Part only, you may use coding assistants
(like GitHub Copilot, Cursor, etc.) for writing code. If you do use such assistants, include the prompts
you used at the end of your Colab notebook.

1

https://princeton-nlp.github.io/cos484/
https://princeton-nlp.github.io/cos484/
https://docs.google.com/document/d/e/2PACX-1vQxE61Ns7GaliyfKf7RMMGKl1Tbk43UMvhIjn54j_avEEHEr0cVc6gGTz_Ty9BOw8Eb6EL4J2wdUGjF/pub
https://docs.google.com/document/d/e/2PACX-1vQxE61Ns7GaliyfKf7RMMGKl1Tbk43UMvhIjn54j_avEEHEr0cVc6gGTz_Ty9BOw8Eb6EL4J2wdUGjF/pub
https://docs.google.com/document/d/e/2PACX-1vSsX8xC1veYHY19JpmsF8yjBsseIAMX0OWIgf_Q-6jNIb7gl86SYARB6EkPejGAIPiWfgbQ6LdYBbav/pub
https://docs.google.com/document/d/e/2PACX-1vSsX8xC1veYHY19JpmsF8yjBsseIAMX0OWIgf_Q-6jNIb7gl86SYARB6EkPejGAIPiWfgbQ6LdYBbav/pub
https://colab.research.google.com/drive/1oKo4A5mu9ygeyCZDj8nNEbTwZmQhqf4d?usp=sharing
https://colab.research.google.com/drive/1oKo4A5mu9ygeyCZDj8nNEbTwZmQhqf4d?usp=sharing
https://docs.google.com/document/d/e/2PACX-1vRxeJWX9tGMmzD9TWJlkop21K_wU7cDTN63-KnRAhqw8jFYYG_lKbJuDD1A0FdgX4uuYGzDY5mfn6l0/pub


120 points – Assignment #1 2

Theoretical Part

Submission Policy: Submit a single PDF for the answers to all questions in this part.

Problem 1: Language models and perplexity (10 + 5 + 5 + 10 = 30 points)

Assume you are given the following corpus of text:
<s> I like strawberries </s>

<s> You like all strawberries </s>

<s> I hate sour fruits </s>

<s> You like all sweet fruits </s>

<s> I like chocolate covered strawberries </s>

where <s> and </s> are tokens representing the start and end of a sentence, respectively. In all the following
questions, ignore the probabilities P(<s>) or P(<s> | </s>).

(a) Provide the equation for bigram probabilities and estimate all non-zero bigram probabilities for this
corpus (split into tokens by whitespace only, e.g raspberries and berries are different tokens). Present the
probabilities in a tabular format:

Bigram Probability
P(I | <s>) ·

· ·

(b) Using the above estimate, provide the probabilities for the sentences <s> You like all strawberries

</s> and <s> You hate sour fruits </s>. Since the former is one of the five sentences in the corpus, would
you expect its probability to be 1

5? Why or why not?

(c) For any generic corpus, can you calculate accurate trigram probabilities for all word combinations P(w3 |
w1, w2) if you are given all bigram probabilities - P(w3 | w2) (without access to the true bigram/trigram counts)?

(d) Calculate the perplexity of the following corpus using your bigram model. Remember that <s> should not
be included when calculating the length of the sentence.
<s> I like all sweet fruits </s>

<s> You like strawberries </s>



120 points – Assignment #1 3

Problem 2: Naive Bayes (10 + 10 = 20 points)

Given the following documents with counts for key sentiment words, with positive or negative class labeled:

doc “good” “poor” “great” “terrible” label
D1 2 1 3 0 +
D2 0 2 0 1 −
D3 1 3 0 0 −
D4 1 5 2 0 −
D5 3 0 3 0 +
D6 0 0 0 1 −

(a) Compute a naive Bayes model (with add-1 smoothing) on the above documents and assign a class (+/−)
to the following sentence:

great characters and good acting, but terrible plot

You should just use V = {good,poor, great, terrible}. Provide details for your answer. Note that this problem
doesn’t require programming.

(b) For sentiment classification and a number of other text classification tasks, whether a word occurs or not
matters more than its frequency. A variant of naive Bayes, called binarized naive Bayes, is to clip the word
counts in each document at 1 (i.e. if a word appears multiple times in a document, it should be only counted
once). Compute a binarized naive Bayes model (with add-1 smoothing) on the same documents and predict
the label of the above sentence while providing details for your answer. Which of the two models do you think
is better and why?



120 points – Assignment #1 4

Problem 3: Understanding word2vec (5 + 5 = 10 points)

Given a sequence of words w1, . . . , wT and context size c, the training objective of skip-gram that we saw
in class is:

L = − 1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

logP (wt+j | wt),

where P (wo | wt) is defined as:

P (wo | wt) =
exp

(
u⊺
wt
vwo

)∑
k∈V exp (u⊺

wtvk)
,

where uk represents the “target” vector and vk represents the “context” vector, for every k ∈ V .

(a) Derive the following gradient (probability w.r.t context vector):

−∂ logP (wo | wt)

∂vwo

(b) Assume we train this model on a large corpus (e.g. English Wikipedia). Describe at least two effects of
choosing different context sizes c for training the word vectors uw, e.g. what would you expect if we used
context size c = 1, 5, or 100?



120 points – Assignment #1 5

Programming Part

Submission Policy: The answers to the written questions for this part should be answered in the Colab
notebook. Do not include the answers to this part in the same PDF as the theory part.

Problem 1: Smoothing in language models (5 + 5 + 5 + 10 + 5 = 30 points)

This part will require programming in Python 3. You will explore building and testing a language model
with smoothing. To get started, open this Colab notebook.

You can download training and validation datasets for this problem from the links below:

• Training data: https://princeton-nlp.github.io/cos484/assignments/a1/brown-train.txt

• Validation data: https://princeton-nlp.github.io/cos484/assignments/a1/brown-val.txt

(a) Write two functions to tokenize the corpus. One function, basicTokenize, should simply split the text using
whitespace. The other function, nltkTokenize, should use NLTK’s word tokenization (https://www.nltk.
org). Write another function to count the top k most frequent words in a list. Report the top 10 words ordered
by their frequency in the training corpus, both using basicTokenize and nltkTokenize. What differences do
you notice between the two?

(b) Using the nltkTokenize function you wrote, make a plot of the frequencies of words in the training corpus,
ordered by their rank, i.e. the most frequent word first, the second most word next, and so on on the x axis.
Plot only the top 100 most common words to see the trend more clearly. What pattern do you observe in your
plot regarding frequency and rank? Do the frequencies follow Zipf’s law? (Please fill code in the cell titled
"Code for sub-part (a)(b)").

Use the basicTokenize function and bigram language model (n = 2) for the following questions.

(c) Train the model and report its perplexity on the train and validation sets. Is the train or val perplexity
higher and why? What do you notice about the val perplexity and why is this the case? (Please fill code in the
cell titled "Code for sub-part (c)").

(d) Implement Laplace (add-α) smoothing and retrain the model. Plot the perplexity on train and validation
sets as a function of alpha (with values 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10). What happens to the validation
and training perplexity as we increase alpha and why does this happen? What seems to be a good setting for
alpha? Provide brief justification. (Please fill code in the cell titled "Code for sub-part (d)").

(e) Based on your performance in the previous experiments, propose one idea apart from Laplace smoothing to
improve the performance of your bigram language model on the validation set. Briefly describe the modification,
explain why you expect it will improve validation perplexity, and discuss any potential limitations.

https://colab.research.google.com/drive/1L3Kkj1rYhHfzYm82Zj8NBexHyavfHvi9?usp=sharing
https://www.nltk.org
https://www.nltk.org


120 points – Assignment #1 6

Problem 2: Sentiment analysis (15 + 10 + 5 = 30 points)

This problem will require programming in Python 3. The goal is to build a logistic regression model that
you learnt from the class on a real-world sentiment classification dataset. To get started, open this Colab
notebook.

The dataset you will be using is collected from movie reviews online. All the examples have been already
tokenized and lowercased and each example is labeled as 1 (positive) or 0 (negative). The dataset has been
split into a training, a development and a test set. You will only need the training and development sets for
this problem, which you can download from the links below:

• Training data: https://princeton-nlp.github.io/cos484/assignments/a1/train.txt

• Development data: https://princeton-nlp.github.io/cos484/assignments/a1/dev.txt

Each line in the data files consists of a label (0 or 1) followed by the words in the sentence, separated by
spaces. You will need to write a function to parse these files.

You will now build a Logistic Regression model for sentiment analysis. You are required to implement the
full pipeline, including data loading, feature extraction, a logistic regression model, and the training loop.

• Data Loading and Feature Extraction: You will need to implement a method that processes raw
text into feature vectors by mapping vocabulary terms to unique indices. Your implementation needs to
support Unigram extraction, where features represent individual word counts, as well as Bigram extraction,
where features represent consecutive word pair counts. Make sure your setup correctly handles feature
indexing so that the same mapping is applied to both training and development data.

• Model Implementation: You should implement a class that supports the logistic regression logic. This
includes:

– Initialization: A function to initialize the model parameters (weights and biases) as well as hyper-
parameters (including the learning rate, regularization parameter, and number of epochs).

– Optimization: A training method that iterates through the dataset, calculates the gradient of the
loss function for each example or batch, and updates the parameters using your chosen optimization
function (we suggest using Stochastic Gradient Descent or Mini-batch SGD for efficiency).

– Inference: A function that outputs the model’s prediction for a single example.

• Training Loop: You should implement the logic for your model to train on the given training examples.
Experiment with different hyperparameters to find the ones that optimize performance.

(a) In this part, we want to train the logistic regression model without regularization. Train your model with
(i) unigram features only and (ii) bigram features only (two different models)

Report training and development accuracies for both runs on the dataset. How do the results of the unigram
and bigram models compare? (Please fill code in the cell titled "Code for sub-part (a)").

(b) Next, we will experiment with l2 regularization R(θ) = α∥θ∥2. Fill in the code for performing logis-
tic regression with regularization. Plot the accuracy on train and development sets as a function of α =
{0, 10−2, 10−1, 1, 10}. You only need to experiment with unigram features for this part. Explain what you
observe. Does this match what you would expect from regularization? Hint: There are several ways to imple-
ment the logistic regression model with regularization, and we will be accepting any correct implementation —
regardless of the final model performance. (Please fill code in the cell titled "Code for sub-part (b)").

(c) Based on your model’s performance in the previous experiment, propose one change you would consider
making to either the model or feature extraction pipeline to further improve development set performance.
Briefly describe the modification, explain why you expect it will improve validation perplexity, and discuss any
potential limitations.

https://colab.research.google.com/drive/1xJKGWrzJltxjsqZ_QFSVCRMdxAtoiGpL?usp=sharing
https://colab.research.google.com/drive/1xJKGWrzJltxjsqZ_QFSVCRMdxAtoiGpL?usp=sharing

