
COS 484: Natural Language Processing (Due: 02/17/25)

Assignment #1

Instructor: Danqi Chen, Tri Dao, Vikram Ramaswamy 100 points

Course Policy: Read all the instructions below carefully before you start working on the assignment and
before you make a submission. The course assignment policy is available at https://princeton-nlp.github.
io/cos484/. When you’re ready to submit, please follow the instructions found here: http://bit.ly/COS_

NLP_Submission

• This assignment contains 2 parts, a theoretical and a programming part. The former consists of 2 problems,
and the latter has 2, for a total of 4 problems.

• We highly recommended that you typeset your submissions in LATEX. Use the template provided on
the website for your answers. If you have never used LATEX, you can refer to the short guide here:
http://bit.ly/WorkingWithLaTeX. Include your name and NetIDs with your submission. If you wish
to submit hand-written answers, you can scan and upload the pdf.

• Assignments must be uploaded to Gradescope before class (01:59pm Eastern) on the due date men-
tioned above.

• As per the late-day policy outlined on the course website, you have 4 late days to use at your discretion
throughout the semester. Once you run out of late days, late submissions will incur a penalty of 10% for
each day, up to a maximum of 3 days beyond which submissions will not be accepted.

• All programming problems in this class will be completed in Google Colab using Python. If you would
like to get familiar with this environment, you may complete the problems in this introductory Colab
notebook (This will not be graded). If you’ve never worked with Google Colab before, take a look through
this introduction guide: http://bit.ly/WorkingWithColab. The answers to the written questions
proposed in the programming part should be answered in the Colab notebook.

1

https://princeton-nlp.github.io/cos484/
https://princeton-nlp.github.io/cos484/
http://bit.ly/COS_NLP_Submission
http://bit.ly/COS_NLP_Submission
http://bit.ly/WorkingWithLaTeX
https://colab.research.google.com/drive/1oKo4A5mu9ygeyCZDj8nNEbTwZmQhqf4d?usp=sharing
https://colab.research.google.com/drive/1oKo4A5mu9ygeyCZDj8nNEbTwZmQhqf4d?usp=sharing
http://bit.ly/WorkingWithColab


100 points – Assignment #1 2

Theoretical Part

Submission Policy: Submit a single PDF for the answers to all questions in this part.

Problem 1: Language models and perplexity (10 + 5 + 5 + 10 = 30 points)

Assume you are given the following corpus of text:
<s> I like strawberries </s>

<s> You like all strawberries </s>

<s> I hate sour fruits </s>

<s> You like all sweet fruits </s>

<s> I like chocolate covered strawberries </s>

where <s> and </s> are tokens representing the start and end of a sentence, respectively. In all the following
questions, ignore the probabilities P(<s>) or P(<s> | </s>).

(a) Provide the equation for bigram probabilities and estimate all non-zero bigram probabilities for this
corpus (split into tokens by whitespace only, e.g raspberries and berries are different tokens). Present the
probabilities in a tabular format:

Bigram Probability
P(I | <s>) ·

· ·

(b) Using the above estimate, provide the probabilities for the sentences <s> You like all strawberries

</s> and <s> You hate sour fruits </s>. Since the former is one of the five sentences in the corpus, would
you expect its probability to be 1

5? Why or why not?

(c) For any generic corpus, can you calculate accurate trigram probabilities for all word combinations P(w3 |
w1, w2) if you are given all bigram probabilities - P(w3 | w2) (without access to the true bigram/trigram counts)?

(d) Calculate the perplexity of the following corpus using your bigram model. Remember that <s> should not
be included when calculating the length of the sentence.
<s> I like all sweet fruits </s>

<s> You like strawberries </s>



100 points – Assignment #1 3

Problem 2: Naive Bayes (10 + 10 = 20 points)

Given the following documents with counts for key sentiment words, with positive or negative class labeled:

doc “good” “poor” “great” “terrible” label
D1 2 1 3 0 +
D2 0 2 0 1 −
D3 1 3 0 0 −
D4 1 5 2 0 −
D5 3 0 3 0 +
D6 0 0 0 1 −

(a) Compute a naive Bayes model (with add-1 smoothing) on the above documents and assign a class (+/−)
to the following sentence:

great characters and good acting, but terrible plot

You should just use V = {good,poor, great, terrible}. Provide details for your answer. Note that this problem
doesn’t require programming.

(b) For sentiment classification and a number of other text classification tasks, whether a word occurs or not
matters more than its frequency. A variant of naive Bayes, called binarized naive Bayes, is to clip the word
counts in each document at 1 (i.e. if a word appears multiple times in a document, it should be only counted
once). Compute a binarized naive Bayes model (with add-1 smoothing) on the same documents and predict
the label of the above sentence while providing details for your answer. Which of the two models do you think
is better and why?



100 points – Assignment #1 4

Programming Part

Submission Policy: The answers to the written questions for this part should be answered in the Colab
notebook. Do not include the answers to this part in the same PDF as the theory part.

Problem 1: Smoothing in language models (5 + 5 + 5 + 10 = 25 points)

This part will require programming in Python 3. You will explore building and testing a language model
with smoothing. To get started, open this Colab notebook.

For all the coding parts below, you should not need to create any new files or notebooks. The
notebook has sections where you can fill in the code for all subproblems. Feel free to add and delete arguments
in function signatures, but be careful that you might need to change them in function calls which are already
present in the notebook.

(a) Complete the functions nltkTokenize and countTopWords. Report the top 10 words ordered by their
frequency in the training corpus, both using basicTokenize and nltkTokenize. What differences do you
notice between the two?

(b) Using the nltkTokenize function you wrote, make a plot of the frequencies of words in the training corpus,
ordered by their rank, i.e. the most frequent word first, the second most word next, and so on on the x axis.
Plot only the top 100 most common words to see the trend more clearly. What pattern do you observe in your
plot regrading frequency and rank? Do the frequencies follow Zipf’s law? (Please fill code in the cell titled
"Code for sub-part (a)(b)").

Use the basicTokenize function and bigram language model (n = 2) for the following questions.

(c) Train the model and report its perplexity on the train and validation sets. Is the train or val perplexity
higher and why? What do you notice about the val perplexity and why is this the case?

(d) Implement Laplace (add-α) smoothing within the appropriate function provided (computeBigramAddAlpha)
and retrain the model. Plot the perplexity on train and validation sets as a function of alpha (with values
10−5, 10−4, 10−3, 10−2, 10−1, 1, 10). What happens to the validation and training perplexity as we increase
alpha and why does this happen? What seems to be a good setting for alpha? Provide brief justification.

https://colab.research.google.com/drive/1sYOXlEasdFQ6IAL4AXFvA_LtJuuQdPFO


100 points – Assignment #1 5

Problem 2: Sentiment analysis (15 + 10 = 25 points)

This problem will require programming in Python 3. The goal is to build a logistic regression model that
you learnt from the class on a real-world sentiment classification dataset. To get started, open this Colab
notebook.

The dataset you will be using is collected from movie reviews online. All the examples have been already
tokenized and lowercased and each example is labeled as 1 (positive) or 0 (negative). The dataset has been split
into a training, a development and a test set.

For all the coding parts below, you should not need to create any new files or notebooks. The
notebook has sections where you can fill in the code for all subproblems. Feel free to add and delete arguments
in function signatures, but be careful that you might need to change them in function calls which are already
present in the notebook.

You will now build the key parts of a Logistic Regression model for sentiment analysis. You are required to
implement the train lr function, LogisticRegressionClassifier class, and code for plotting accuracy when
the regularization parameter is varied.

• train lr: it takes a list of training examples (class SentimentExample) and a feature extractor (class
FeatureExtractor) as input and is required to output an instance of LogisticRegressionClassifier.

• LogisticRegressionClassifier: you should at least implement init , train, and predict functions.
Feel free to add more arguments to init and train but don’t change the arguments in predict — it
should just take an example ex (class SentimentExample) and predict a label 1 or 0.

• You will probably want to take a look at the UnigramFeatureExtractor and BigramFeatureExtractor

classes that we have implemented for you already!

(a) First, implement a logistic regression model without regularization. And then train your model with uni-
gram and bigram features (code for creating features has already been written for you).

Report both training and development accuracy on the dataset. How do you compare the results of the
unigram and bigram models? Hint: You might find that batch optimization is too slow. Try to use stochastic
gradient descent or (mini-batch) stochastic gradient descent!

(b) Next, we would like to experiment with l2 regularization R(θ) = α∥θ∥2. Plot the accuracy on train and
development sets as a function of α = {0, 10−2, 10−1, 1, 10}. You only need to experiment with unigram freatures
for this part. Explain what you observe. Does this match what you would expect from regularization? Hint:
There are several ways to implement the logistic regression model with regularization, and we will be accepting
any correct implementation — regardless of the final model performance.

https://colab.research.google.com/drive/1JD7kUhIqr-gfCNPQBPIFZQtft3dXq0F9
https://colab.research.google.com/drive/1JD7kUhIqr-gfCNPQBPIFZQtft3dXq0F9

